Chin. Phys. Lett.  2013, Vol. 30 Issue (10): 103201    DOI: 10.1088/0256-307X/30/10/103201
ATOMIC AND MOLECULAR PHYSICS |
Experimental Measurement of the Absolute Frequencies and Hyperfine Coupling Constants of 133Cs Using a Femtosecond Optical Frequency Comb
JIN Li1,2, ZHANG Yi-Chi2, XIANG Shao-Shan2, WANG Li-Rong2**, MA Jie2, ZHAO Yan-Ting2, XIAO Lian-Tuan2, JIA Suo-Tang1,2
1Department of Physics, College of Science, North University of China, Taiyuan 030051
2State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan 030006
Cite this article:   
JIN Li, ZHANG Yi-Chi, XIANG Shao-Shan et al  2013 Chin. Phys. Lett. 30 103201
Download: PDF(628KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract High resolution two-photon spectrum of the transitions 6S1/26P3/28S1/2, 9S1/2 and 6S1/26P1/27D3/2 in neutral 133Cs are presented in a room-temperature vapor cell using a femtosecond optical frequency comb. Spectra are obtained by scanning the repetition frequency of the femtosecond optical frequency comb over the two-photon hyperfine structure. The centroid frequency of the 6S1/28S1/2, 9S1/2, 7D3/2 transitions are 729009798.80(17) MHz, 806761363.96(11) MHz, and 780894762.595(23) MHz, respectively. The hyperfine coupling constants of the corresponding states are also obtained. The results are consistent with the previous measurements.
Received: 19 July 2013      Published: 21 November 2013
PACS:  32.10.Fn (Fine and hyperfine structure)  
  34.10.+x (General theories and models of atomic and molecular collisions and interactions (including statistical theories, transition state, stochastic and trajectory models, etc.))  
  34.35.+a (Interactions of atoms and molecules with surfaces)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/10/103201       OR      https://cpl.iphy.ac.cn/Y2013/V30/I10/103201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
JIN Li
ZHANG Yi-Chi
XIANG Shao-Shan
WANG Li-Rong
MA Jie
ZHAO Yan-Ting
XIAO Lian-Tuan
JIA Suo-Tang
[1] Wood C S et al 1997 Science 275 1759
[2] Gerginov V et al 2006 Phys. Rev. A 73 032504
[3] Gerginov V et al 2003 Phys. Rev. Lett. 91 072501
[4] Leggett A J 2001 Rev. Mod. Phys. 73 307
[5] Wynards R and Weyers S 2005 Metrologia 42 S64
[6] Budker D and Romalis M V 2007 Nat. Phys. 3 227
[7] Marian A et al 2005 Phys. Rev. Lett. 95 023001
[8] Jones D J et al 2000 Science 288 635
[9] Teets R et al 1977 Phys. Rev. Lett. 38 760
[10] Safronova M S et al 1999 Phys. Rev. A 60 4476
[11] Fendel P et al 2007 Opt. Lett. 32 701
[12] Eckstein J N et al 1978 Phys. Rev. Lett. 40 847
[13] Zhang Y C et al 2012 Chin. Phys. B 21 113701
[14] Cheng H D et al 2011 Chin. Phys. B 20 023701
[15] Demtr?der W 2003 Laser Spectrosc.: Basic Concepts Instrum. 3rd edn (New York: Springer-Verlag)
[16] Sophia C 2012 PhD Dissertation (Oberlin: Oberlin College)
[17] Stowe M C et al 2008 Advances in Atomic, Molecular, and Optical Physics (New York: Academic) vol 55
[18] Corney A 1979 Atomic and Laser Spectroscopy (New York: Oxford University Press)
[19] Stalnaker J E et al 2010 Phys. Rev. A 81 043840
[20] Hagel G et al 1999 Opt. Commun. 160 1
[21] Weber K H and Sansonetti C J 1987 Phys. Rev. A 35 4650
[22] Farley J et al 1977 Phys. Rev. A 15 1530
[23] Kortyna A et al 2008 Phys. Rev. A 77 062505
Related articles from Frontiers Journals
[1] Shao-Long Chen, Peng-Peng Zhou, Shi-Yong Liang, Wei Sun, Huan-Yao Sun, Yao Huang, Hua Guan, Ke-Lin Gao. Deceleration of Metastable $\rm{Li}^{+}$ Beam by Combining Electrostatic Lens and Ion Trap Technique[J]. Chin. Phys. Lett., 2020, 37(7): 103201
[2] Khan Sadiq Nawaz, Cheng-Dong Mi, Liang-Chao Chen, Peng-Jun Wang, Jing Zhang. Experimental Investigation of the Electromagnetically Induced-Absorption-Like Effect for an N-Type Energy Level in a Rubidium BEC[J]. Chin. Phys. Lett., 2019, 36(4): 103201
[3] Chuan-Biao Zhang, Dian-Qiang Su, Zhong-Hua Ji, Yan-Ting Zhao, Lian-Tuan Xiao, Suo-Tang Jia. Erratum and Note: Measurement of Zeeman Shift of Cesium Atoms Using an Optical Nanofiber [Chin. Phys. Lett. 35(2018)083201][J]. Chin. Phys. Lett., 2018, 35(12): 103201
[4] Yi-Hong Li, Shao-Hua Li, Jin-Peng Yuan, Li-Rong Wang, Lian-Tuan Xiao, Suo-Tang Jia. Experimental Study on Double Resonance Optical Pumping Spectroscopy in a Ladder-Type System of $^{87}$Rb Atoms[J]. Chin. Phys. Lett., 2018, 35(9): 103201
[5] Chuan-Biao Zhang, Dian-Qiang Su, Zhong-Hua Ji, Yan-Ting Zhao, Lian-Tuan Xiao, Suo-Tang Jia. Measurement of Zeeman Shift of Cesium Atoms Using an Optical Nanofiber[J]. Chin. Phys. Lett., 2018, 35(8): 103201
[6] Yu-Xiong Duan, Bin Wang, Jing-Feng Xiang, Qian Liu, Qiu-Zhi Qu, De-Sheng Lü, Liang Liu. State Preparation in a Cold Atom Clock by Optical Pumping[J]. Chin. Phys. Lett., 2017, 34(7): 103201
[7] Shao-Yang Dai, Kun-Qian Li, Yue-Yang Zhai, Wei Xia, Qing Wang, Wei Xiong, Xiang-Hui Qi, Xu-Zong Chen. Absolutely Direct Frequency Measurement of Two-Photon Transition Using Multi-Peak Fitting Approach[J]. Chin. Phys. Lett., 2017, 34(1): 103201
[8] Yi-Chi Zhang, Peng-Rui Fan, Jin-Peng Yuan, Li-Rong Wang, Lian-Tuan Xiao, Suo-Tang Jia. High-Resolution Rb Two-Photon Transition Spectroscopy by a Femtosecond Frequency Comb via Pulses Control[J]. Chin. Phys. Lett., 2016, 33(11): 103201
[9] Hao Shi, Jie Ma, Xiao-Feng Li, Jie Liu, Shou-Gang Zhang. Simulation and Design of Fluorescence Collector[J]. Chin. Phys. Lett., 2016, 33(09): 103201
[10] Zhi-Hui Yang, Hao Liu, Yue-Hong He, Man Wang, Yong-Quan Wan, Yi-He Chen, Lei She, Jiao-Mei Li. Optimal Microwave Radiation Field Parameters for Mercury Ion Microwave Frequency Standards[J]. Chin. Phys. Lett., 2016, 33(06): 103201
[11] Wei Xia, Shao-Yang Dai, Yin Zhang, Kun-Qian Li, Qi Yu, Xu-Zong Chen. Precision Frequency Measurement of $^{87}$Rb 5$S_{1/2}$ ($F=2$)$\to$5$D_{5/2}$ ($F''=4$) Two-Photon Transition through a Fiber-Based Optical Frequency Comb[J]. Chin. Phys. Lett., 2016, 33(05): 103201
[12] Shu-Kai Cao, Peng-Rui Fan, Yi-Chi Zhang, Li-Rong Wang, Lian-Tuan Xiao, Suo-Tang Jia. Two-Photon Transitions of $^{85}$Rb 5$D_{5/2}$ State by Using an Optical Frequency Comb and a Continuous-Wave Laser[J]. Chin. Phys. Lett., 2016, 33(02): 103201
[13] CAI Juan, YU Wei-Wei, ZHANG Nan. The Scaling Law in the Fine-Structure Splitting of 1s2np States for the Lithium Isoelectronic Sequence[J]. Chin. Phys. Lett., 2014, 31(09): 103201
[14] LIU Hao, YANG Yu-Na, HE Yue-Hong, LI Hai-Xia, CHEN Yi-He, SHE Lei, LI Jiao-Mei. Microwave-Optical Double-Resonance Spectroscopy Experiment of 199Hg+ Ground State Hyperfine Splitting in a Linear Ion Trap[J]. Chin. Phys. Lett., 2014, 31(06): 103201
[15] GUO Jian, WANG Yan-Hui. Analysis of Laser-Diode and Lamp Optical Pumping for a Rubidium Beam[J]. Chin. Phys. Lett., 2013, 30(2): 103201
Viewed
Full text


Abstract