Chin. Phys. Lett.  2013, Vol. 30 Issue (10): 100501    DOI: 10.1088/0256-307X/30/10/100501
GENERAL |
A Nanosize Quantum-Dot Photoelectric Refrigerator
LI Cong, ZHANG Yan-Chao, HE Ji-Zhou**
Department of Physics, Nanchang University, Nanchang 330031
Cite this article:   
LI Cong, ZHANG Yan-Chao, HE Ji-Zhou 2013 Chin. Phys. Lett. 30 100501
Download: PDF(613KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We investigate the thermodynamic performance of a nanosized photoelectric refrigerator consisting of two single energy levels embedded between two reservoirs at different temperatures. Based on the quantum master equation, expressions for the cooling power and coefficient of performance (COP) of the refrigerator are derived. The characteristic curves between the cooling power and COP are plotted. Moreover, the optimal performance parameters are analyzed by the numerical calculation and graphic method. The influence of the nonradiative processes on the performance characteristics and optimal performance parameters are discussed in detail.
Received: 23 May 2013      Published: 21 November 2013
PACS:  05.70.Ln (Nonequilibrium and irreversible thermodynamics)  
  05.30.-d (Quantum statistical mechanics)  
  07.20.Mc (Cryogenics; refrigerators, low-temperature detectors, and other low-temperature equipment)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/10/100501       OR      https://cpl.iphy.ac.cn/Y2013/V30/I10/100501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LI Cong
ZHANG Yan-Chao
HE Ji-Zhou
[1] Small J P, Perez K M and Kim P 2003 Phys. Rev. Lett. 91 256801
[2] Edwards H L, Niu Q and De Lozanne A L 1993 Appl. Phys. Lett. 63 1815
[3] Harman T C, Taylor P J, Walsh M P and LaForge B E 2002 Science 297 2229
[4] Esposito M, Kawai R, Lindenberg K and Van den Broeck C 2010 Phys. Rev. E 81 041106
[5] Esposito M, Kumar N, Lindenberg K and Van den Broeck C 2012 Phys. Rev. E 85 031117
[6] Humphrey T E, Newbury R, Taylor R P and Linke H 2002 Phys. Rev. Lett. 89 116801
[7] Humphrey T E and Linke H 2005 Phys. Rev. Lett. 94 096601
[8] Nakpathomkun N, Xu H Q and Linke H 2010 Phys. Rev. B 82 235428
[9] Luo X G and He J Z 2011 Chin. Phys. B 20 030509
[10] Zhang Y C and He J Z 2013 Chin. Phys. Lett. 30 010501
[11] He B X, He J Z and Miao G L 2011 Acta Phys. Sin. 60 040509 (in Chinese)
[12] Esposito M, Kawai R, Lindenberg K and Van den Broeck C 2010 Phys. Rev. Lett. 105 150603
[13] Tian B Z, Zheng X L, Kempa T J, Fang Y, Yu N F, Yu G H, Huang J L and Lieber C M 2007 Nature 449 885
[14] Boukai A I, Bunimovich Y, Kheli J T, Yu J K, Goddard I I I W A and Heath J R 2008 Nature 451 168
[15] Klimov V I 2006 Appl. Phys. Lett. 89 123118
[16] Meschke M, Guichard W and Pekola J P 2006 Nature 444 187
[17] Timmerman D, Izeddin I, Stallinga P, Yassievich I N and Gregorkiewicz T 2008 Nat. Photon. 2 105
[18] Rutten B, Esposito M and Cleuren B 2009 Phys. Rev. B 80 235122
[19] Mari A and Eisert J 2012 Phys. Rev. Lett. 108 120602
[20] Cleuren B, Rutten B and Van den Broeck C 2012 Phys. Rev. Lett. 108 120603
Related articles from Frontiers Journals
[1] Mengmeng Xi, Rongqian Wang, Jincheng Lu, and Jian-Hua Jiang. Coulomb Thermoelectric Drag in Four-Terminal Mesoscopic Quantum Transport[J]. Chin. Phys. Lett., 2021, 38(8): 100501
[2] Chen Wang, Lu-Qin Wang, and Jie Ren. Managing Quantum Heat Transfer in a Nonequilibrium Qubit-Phonon Hybrid System with Coherent Phonon States[J]. Chin. Phys. Lett., 2021, 38(1): 100501
[3] Xiaowei Liu, Jingyuan Guo, Zhibing Li. Critical One-Dimensional Absorption-Desorption with Long-Ranged Interaction[J]. Chin. Phys. Lett., 2019, 36(8): 100501
[4] Yu-Hong Zhang, Hui Liu, Ying-Rong Han, Ya-Fei Chen, Su-Hua Zhang, Yong Zhan. Temperature Impacts on Transient Receptor Potential Channel Mediated Calcium Oscillations in Astrocytes[J]. Chin. Phys. Lett., 2017, 34(9): 100501
[5] Nan-Xian Chen, Bo-Hua Sun. Note on Divergence of the Chapman–Enskog Expansion for Solving Boltzmann Equation [J]. Chin. Phys. Lett., 2017, 34(2): 100501
[6] Pei-Yan Peng, Chang-Kui Duan. A Maxwell Demon Model Connecting Information and Thermodynamics[J]. Chin. Phys. Lett., 2016, 33(08): 100501
[7] SU Hao, SHI Zhi-Cheng, HE Ji-Zhou. Optimal Performance Analysis of a Three-Terminal Thermoelectric Refrigerator with Ideal Tunneling Quantum Dots[J]. Chin. Phys. Lett., 2015, 32(10): 100501
[8] WEN Fa-Kai, YANG Zhan-Ying, CUI Shuai, CAO Jun-Peng, YANG Wen-Li. Spectrum of the Open Asymmetric Simple Exclusion Process with Arbitrary Boundary Parameters[J]. Chin. Phys. Lett., 2015, 32(5): 100501
[9] ZHOU Zong-Li, LI Min, YE Jian, LI Dong-Peng, LOU Ping, ZHANG Guo-Shun. The Heisenberg Model after an Interaction Quench[J]. Chin. Phys. Lett., 2014, 31(10): 100501
[10] Roumen Tsekov, Marga C. Lensen. Brownian Motion and the Temperament of Living Cells[J]. Chin. Phys. Lett., 2013, 30(7): 100501
[11] ZHANG Yan-Chao, HE Ji-Zhou. Efficiency at Maximum Power of a Quantum Dot Heat Engine in an External Magnetic Field[J]. Chin. Phys. Lett., 2013, 30(1): 100501
[12] Clóves G. Rodrigues. Onset for the Electron Velocity Overshoot in Indium Nitride[J]. Chin. Phys. Lett., 2012, 29(12): 100501
[13] XIAO Yao, HUA Da-Yin. Promotion of Cooperation in a Spatial Public Goods Game with Long Range Learning and Mobility[J]. Chin. Phys. Lett., 2012, 29(11): 100501
[14] WU An-Cai . Percolation of Mobile Individuals on Weighted Scale-Free Networks[J]. Chin. Phys. Lett., 2011, 28(11): 100501
[15] ZHANG Yan-Ping, HE Ji-Zhou**, XIAO Yu-Ling . An Approach to Enhance the Efficiency of a Brownian Heat Engine[J]. Chin. Phys. Lett., 2011, 28(10): 100501
Viewed
Full text


Abstract