Chin. Phys. Lett.  2013, Vol. 30 Issue (10): 100403    DOI: 10.1088/0256-307X/30/10/100403
GENERAL |
Thermodynamics of Phantom Energy Accreting onto a Black Hole in Einstein–Power–Maxwell Gravity
G. Abbas1**, R. M. Ramzan2
1Department of Mathematics, COMSATS Institute of Information Technology, Sahiwal-67000, Pakistan
2Department of Mathematics, The Islamia University Bahawalpur, Pakistan
Cite this article:   
G. Abbas, R. M. Ramzan 2013 Chin. Phys. Lett. 30 100403
Download: PDF(412KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We investigate the phantom energy accretion onto a 3D black hole formulated in the Einstein–Power–Maxwell theory, and present the conditions for critical accretion of phantom energy onto the black hole. Further, we discuss the thermodynamics of phantom energy accreting onto the black hole and find that the first law of thermodynamics is easily satisfied while the second law and the generalized second law of thermodynamics remain invalid and conditionally valid, respectively. The results for the Banados–Teitelboim–Zanelli black hole can be recovered by taking Maxwellian contribution equal to zero.
Received: 19 April 2013      Published: 21 November 2013
PACS:  04.70.Bw (Classical black holes)  
  04.70.Dy (Quantum aspects of black holes, evaporation, thermodynamics)  
  95.35.+d (Dark matter)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/10/100403       OR      https://cpl.iphy.ac.cn/Y2013/V30/I10/100403
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
G. Abbas
R. M. Ramzan
[1] Banados M, Teitelboim C and Zaneli J 1992 Phys. Rev. Lett. 69 1849
[2] Martinez C, Teitelboim C and Zaneli J 2004 Phys. Rev. D 69 104013
[3] Chan K C K and Mann R B 1994 Phys. Rev. D 50 6385
[4] Cataldo M, Curz N, Campo S D and Garcia A 2000 Phys. Lett. B 484 154
[5] Hassaine M and Martinez C 2007 Phys. Rev. D 75 027502
[6] Hassaine M and Martinez C 2008 Classical Quantum Gravityty 25 195023
[7] Gurtug O, Mazharimousavi S H and Halilsoy M 2012 Phys. Rev. D 85 104004
[8] Saridakis E N 2010 Eur. Phys. J. C 67 229
[9] Saridakis E N 2010 Nucl. Phys. B 830 374
[10] Setare M R and Saridakis E N 2009 J. Cosmol. Astropart. Phys. 03 002
[11] Setare M R and Saridakis E N 2008 Phys. Lett. B 670 1
[12] Saridakis E N 2008 Phys. Lett. B 661 335
[13] Bondi H 1952 Mon. Not. R. Astron. Soc. 112 195
[14] Michel F C 1972 Astrophys. Space Sci. 15 153
[15] Babichev E, Dokuchaev V and Eroshenko Y 2004 Phys. Rev. Lett. 93 021102
[16] Jamil M, Rashid M and Qadir A 2008 Eur. Phys. J. C 58 325
[17] Babichev E, Dokuchaev V and Eroshenko Y 2011 J. Exp. Theor. Phys. 112 784
[18] Madrid J A J and Gonzalez P F 2008 Gravitation Cosmol. 14 213
[19] Sharif M and Abbas G 2011 Chin. Phys. Lett. 28 090402
[20] Sharif M and Abbas G 2012 Chin. Phys. Lett. 29 010401
[21] Sharif M and Abbas G 2011 Mod. Phys. Lett. A 26 1731
[22] Sharif M and Abbas G 2013 Chin. Phys. B 22 030401
[23] Sharif M and Abbas G 2011 Astrophys. Space Sci. 335 515
[24] Sharif M and Abbas G 2010 Astrophys. Space Sci. 327 285
[25] Sharif M and Abbas G 2013 J. Phys. Soc. Jpn. 82 034006
[26] Jamil M and Akbar M 2011 Gen. Relativ. Gravitation 43 1061
[27] Abbas G 2013 Sci. China Phys. Mech. Astron. (accepted)
[28] Liu Y and Jing J L 2012 Chin. Phys. Lett. 29 010402
Related articles from Frontiers Journals
[1] Y. Kenedy Meitei, T. Ibungochouba Singh, I. Ablu Meitei. Quantization of Horizon Area of Kerr–Newman–de Sitter Black Hole[J]. Chin. Phys. Lett., 2019, 36(3): 100403
[2] M. Azam, A. Aslam. Accretion onto the Magnetically Charged Regular Black Hole[J]. Chin. Phys. Lett., 2017, 34(7): 100403
[3] Hao Tang, Yu Song, Rui-Hong Yue, Cheng-Yi Sun. Destroying a Peldan Electrostatic Solution Black Hole[J]. Chin. Phys. Lett., 2017, 34(4): 100403
[4] Yu Song, Hao Tang, De-Cheng Zou, Rui-Hong Yue, Cheng-Yi Sun. Destroying Extremal Kerr–Newman-AdS Black Holes with Test Particles[J]. Chin. Phys. Lett., 2017, 34(3): 100403
[5] Yue-Yi Wang, Ju-Hua Chen, Yong-Jiu Wang. Stability Analysis of the Viscous Polytropic Dark Energy Model in Einstein Cosmology[J]. Chin. Phys. Lett., 2016, 33(10): 100403
[6] Jun-Jin Peng, Wen-Chang Xiang, Shao-Hong Cai. Abbott–Deser–Tekin Charge of Dilaton Black Holes with Squashed Horizons[J]. Chin. Phys. Lett., 2016, 33(08): 100403
[7] Wen-Lin Tang, Zi-Ren Luo, Yun-Kau Lau. Generalised Error Functions from the Kerr Metric[J]. Chin. Phys. Lett., 2016, 33(03): 100403
[8] P. K. Sahoo, K. L. Mahanta, D. Goit, A. K. Sinha, S. S. Xulu, U. R. Das, A. Prasad, R. Prasad. Einstein Energy-Momentum Complex for a Phantom Black Hole Metric[J]. Chin. Phys. Lett., 2015, 32(02): 100403
[9] HE Guan-Sheng, LIN Wen-Bin. The Exact Harmonic Metric for a Moving Reissner–Nordstr?m Black Hole[J]. Chin. Phys. Lett., 2014, 31(09): 100403
[10] HUANG Qi-Hong, CHEN Ju-Hua, WANG Yong-Jiu. Chaotic Motion of a Charged Particle around a Weakly Magnetized Schwarzschild Black Hole Containing Cosmic String[J]. Chin. Phys. Lett., 2014, 31(06): 100403
[11] ZHAO Zi-Xu, PAN Qi-Yuan, JING Ji-Liang. Holographic Superconductor Models with RF2 Corrections[J]. Chin. Phys. Lett., 2013, 30(12): 100403
[12] LIU Chang-Qing. Collision of Two General Geodesic Particles around a Kerr–Newman Black Hole[J]. Chin. Phys. Lett., 2013, 30(10): 100403
[13] S. S. Zade. Dynamics of Apparent Horizons in (N+2)-Dimensional Space-Times[J]. Chin. Phys. Lett., 2012, 29(11): 100403
[14] Gamal G. L. Nashed*. Spherically Symmetric Solutions on a Non-Trivial Frame in f(T) Theories of Gravity[J]. Chin. Phys. Lett., 2012, 29(5): 100403
[15] M. Sharif**, G. Abbas. Phantom Energy Accretion by a Stringy Charged Black Hole[J]. Chin. Phys. Lett., 2012, 29(1): 100403
Viewed
Full text


Abstract