Chin. Phys. Lett.  2013, Vol. 30 Issue (10): 100401    DOI: 10.1088/0256-307X/30/10/100401
GENERAL |
Collision of Two General Geodesic Particles around a Kerr–Newman Black Hole
LIU Chang-Qing
Department of Physics and Information Engineering, Hunan Institute of Humanities Science and Technology, Loudi 417000
Cite this article:   
LIU Chang-Qing 2013 Chin. Phys. Lett. 30 100401
Download: PDF(461KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Collision of two general geodesic particles around the Kerr–Newman black hole is studied and the center-of-mass (c.m.) energy of the non-marginally and marginally bound critical particles in the direct collision and the last stable orbit collision scenarios is obtained. The constraint conditions that arbitrarily high c.m. energy can be obtained for the near-horizon collision of two general geodesic particles in the extremal Kerr–Newman black hole is found, and it is noted that the charge decreases the value of the latitude in which arbitrarily high c.m. energy can occur.
Received: 04 July 2013      Published: 21 November 2013
PACS:  04.70.-s (Physics of black holes)  
  04.70.Bw (Classical black holes)  
  97.60.Lf (Black holes)  
  95.30.Sf (Relativity and gravitation)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/10/100401       OR      https://cpl.iphy.ac.cn/Y2013/V30/I10/100401
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LIU Chang-Qing
[1] Ban?dos M, Silk J and West S M 2009 Phys. Rev. Lett. 103 111102
[2] Berti E, Cardoso V, Gualtieri L, Pretorius L F and Sperhake U 2009 Phys. Rev. Lett. 103 239001
[3] Jacobson T and Sotiriou T P 2010 Phys. Rev. Lett. 104 021101
[4] Thorne K S 1974 Astrophys. J. 191 507
[5] Grib A A and Pavlov Y V 2011 Gravitation Cosmol. 17 42
[6] Harada T and Kimura M 2011 Phys. Rev. D 83 024002
[7] Harada T and Kimura M 2011 Phys. Rev. D 83 084041
[8] Sundararajan P A 2008 Phys. Rev. D 77 124050
[9] Zaslavskii O B 2010 Phys. Rev. D 82 083004
[10] Zaslavskii O B JETP Lett. 92 571 2010
[11] Zaslavskii O B 2011 Classical Quantum Gravity 28 105010
[12] Wei S W, Liu Y X, Li H T and Chen F W 2010 J. High Energy Phys. 2010
[13] Wei W S, Liu Y X, Guo H and Fu C E 2010 Phys. Rev. D 82 103005
[14] Liu C Q, Chen S B, Ding C K and Jing J L 2011 Phys. Lett. B 701 285
[15] Patil M, Joshi P S and Malafarina D 2011 Phys. Rev. D 83 064007
[16] Patil M and Joshi P S 2010 Phys. Rev. D 82 104049
[17] Patil M and Joshi P S 2011 Classical Quantum Gravity 28 235012
[18] Kimura M, Nakao K and Tagoshi H 2011 Phys. Rev. D 83 044013
[19] Banados M, Hassanain B, Silk J and West S M 2011 Phys. Rev. D 83 023004
[20] Williams A J 2011 Phys. Rev. D 83 123004
[21] Blandford R D and Znajek R 1977 Mon. Not. R. Astron. Soc. 179 433
[22] Xu S X and Jing J L 2005 Chin. Phys. B 14 2415
[23] Punsly B 1998 Astrophys. J. 498 640
Punsly B 1998 Astrophys. J. 498 660
[24] Ruffini R, Bianco C L, Chardonnet P, Fraschetti F, Vitagliano L and Xue S S AIP Conf. Proc. 668 16 2003
[25] Takahashi R 2005 Publ. Astron. Soc. Jpn. 57 273
[26] Carter B 1968 Phys. Rev. 174 1559
[27] Misner C W, Thorne K S and Wheeler J A 1973 Gravitation (New York: W. H. Freeman)
Related articles from Frontiers Journals
[1] Y. Kenedy Meitei, T. Ibungochouba Singh, I. Ablu Meitei. Quantization of Horizon Area of Kerr–Newman–de Sitter Black Hole[J]. Chin. Phys. Lett., 2019, 36(3): 100401
[2] Jun Liang. Quasinormal Modes of a Noncommutative-Geometry-Inspired Schwarzschild Black Hole: Gravitational, Electromagnetic and Massless Dirac Perturbations[J]. Chin. Phys. Lett., 2018, 35(5): 100401
[3] Ming Zhang, Rui-Hong Yue. Phase Transition and Quasinormal Modes for Spherical Black Holes in 5D Gauss–Bonnet Gravity[J]. Chin. Phys. Lett., 2018, 35(4): 100401
[4] Jun Liang. Quasinormal Modes of a Noncommutative-Geometry-Inspired Schwarzschild Black Hole[J]. Chin. Phys. Lett., 2018, 35(1): 100401
[5] Jun Liang. The $P$–$v$ Criticality of a Noncommutative Geometry-Inspired Schwarzschild-AdS Black Hole[J]. Chin. Phys. Lett., 2017, 34(8): 100401
[6] Jun Liang. Regular Magnetic Black Hole Gravitational Lensing[J]. Chin. Phys. Lett., 2017, 34(5): 100401
[7] Xiao-Xiong Zeng, Xin-Yun Hu, Li-Fang Li. Effect of Phantom Dark Energy on Holographic Thermalization[J]. Chin. Phys. Lett., 2017, 34(1): 100401
[8] Yue-Yi Wang, Ju-Hua Chen, Yong-Jiu Wang. Stability Analysis of the Viscous Polytropic Dark Energy Model in Einstein Cosmology[J]. Chin. Phys. Lett., 2016, 33(10): 100401
[9] Belhaj A., Chabab M., El Moumni H., Masmar K., Sedra M. B.. On Hawking Radiation of 3D Rotating Hairy Black Holes[J]. Chin. Phys. Lett., 2015, 32(10): 100401
[10] ZHANG Ruan-Jing, CHEN Ju-Hua, GAN Qiao-Shan, WANG Yong-Jiu. Time-Like Geodesic Motion in Schwarzschild Spacetime with Weak-Field Limit[J]. Chin. Phys. Lett., 2015, 32(08): 100401
[11] LIAO Ping, ZHANG Ruan-Jing, CHEN Ju-Hua, WANG Yong-Jiu. Scattering of Scalar Wave by Extended Black Hole in f(R) Gravity[J]. Chin. Phys. Lett., 2015, 32(5): 100401
[12] LI Ran. Hawking Radiation of Dirac Field in the Linear Dilaton Black Hole[J]. Chin. Phys. Lett., 2014, 31(06): 100401
[13] Kourosh Nozari, A. Yazdani. The Energy Distribution of a Noncommutative Reissner–Nordstr?m Black Hole[J]. Chin. Phys. Lett., 2013, 30(9): 100401
[14] CHEN Song-Bai, LIU Xiao-Fang, LIU Chang-Qing. PV Criticality of an AdS Black Hole in f(R) Gravity[J]. Chin. Phys. Lett., 2013, 30(6): 100401
[15] A. Belhaj, M. Chabab, H. El Moumni, M. B. Sedra. On Thermodynamics of AdS Black Holes in Arbitrary Dimensions[J]. Chin. Phys. Lett., 2012, 29(10): 100401
Viewed
Full text


Abstract