Chin. Phys. Lett.  2013, Vol. 30 Issue (10): 100304    DOI: 10.1088/0256-307X/30/10/100304
GENERAL |
Measurement of Berry Phase Associated with Higher Dimensional Orbital Angular Momentum of Light by Interference Method
XU Yuan, HUANG Yuan-Yuan, HU Ling, ZHANG Pei, WEI Dong, LI Hong-Rong**, GAO Hong**, LI Fu-Li
MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Department of Applied Physics, Xi'an Jiaotong University, Xi'an 710049
Cite this article:   
XU Yuan, HUANG Yuan-Yuan, HU Ling et al  2013 Chin. Phys. Lett. 30 100304
Download: PDF(1903KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Berry phase of higher-dimensional orbital angular momentum of light is studied. When an Nth order orbital state, described by a vector in (N+1)-dimensional space, evolves through a closed path in space of orbital states, there will exist a higher order orbital Berry phase. We calculate this phase by using the matrix transformation theory. A direct measurement of the higher-order orbital Berry phase is also carried out by the interference method. The experimental results are in good agreement with the theoretical description, which shows that the Berry phase is proportional to the orbital angular momentum of light.
Received: 08 July 2013      Published: 21 November 2013
PACS:  03.65.Vf (Phases: geometric; dynamic or topological)  
  42.25.Hz (Interference)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/10/100304       OR      https://cpl.iphy.ac.cn/Y2013/V30/I10/100304
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
XU Yuan
HUANG Yuan-Yuan
HU Ling
ZHANG Pei
WEI Dong
LI Hong-Rong
GAO Hong
LI Fu-Li
[1] Millione G, Evans S, Nolan D A et al 2012 Phys. Rev. Lett. 108 190401
[2] Millione G, Sztual H I, Nolan D A et al 2011 Phys. Rev. Lett. 107 053601
[3] van Enk S J 1993 Opt. Commun. 96 123
[4] Allen L, Beijersbergen M W, Spreeuw R J C et al 1992 Phys. Rev. A 45 8185
[5] O'Neil A T and Courtial J 2000 Opt. Commun. 181 35
[6] Padgett M J and Courtial J 1999 Opt. Lett. 24 430
[7] Galvez E J, Crawford P R, Sztul H I et al 2003 Phys. Rev. Lett. 90 203901
[8] Zhang A P and Li F L 2013 Chin. Phys. B 22 030308
[9] Duan L M, Cirac J I and Zoller P 2001 Science 292 1695
[10] Beijersbergen M W, Allen L, Vanderveen H et al 1993 Opt. Commun. 96 123
[11] Allen L, Courtial J and Padgett M J 1999 Phys. Rev. E 60 7497
Related articles from Frontiers Journals
[1] Wen Zheng, Jianwen Xu, Zhuang Ma, Yong Li, Yuqian Dong, Yu Zhang, Xiaohan Wang, Guozhu Sun, Peiheng Wu, Jie Zhao, Shaoxiong Li, Dong Lan, Xinsheng Tan, and Yang Yu. Measuring Quantum Geometric Tensor of Non-Abelian System in Superconducting Circuits[J]. Chin. Phys. Lett., 2022, 39(10): 100304
[2] Song Wang, Lei Wang, Furong Zhang, and Ling-Jun Kong. Optimization of Light Field for Generation of Vortex Knot[J]. Chin. Phys. Lett., 2022, 39(10): 100304
[3] Weizheng Cao, Yunlong Su, Qi Wang, Cuiying Pei, Lingling Gao, Yi Zhao, Changhua Li, Na Yu, Jinghui Wang, Zhongkai Liu, Yulin Chen, Gang Li, Jun Li, and Yanpeng Qi. Quantum Oscillations in Noncentrosymmetric Weyl Semimetal SmAlSi[J]. Chin. Phys. Lett., 2022, 39(4): 100304
[4] Heng-Xi Ji, Lin-Han Mo, and Xin Wan. Dynamics of the Entanglement Zero Modes in the Haldane Model under a Quantum Quench[J]. Chin. Phys. Lett., 2022, 39(3): 100304
[5] Xiang Zhang, Zhaozheng Lyu, Guang Yang, Bing Li, Yan-Liang Hou, Tian Le, Xiang Wang, Anqi Wang, Xiaopei Sun, Enna Zhuo, Guangtong Liu, Jie Shen, Fanming Qu, and Li Lu. Anomalous Josephson Effect in Topological Insulator-Based Josephson Trijunction[J]. Chin. Phys. Lett., 2022, 39(1): 100304
[6] Jiong-Hao Wang, Yu-Liang Tao, and Yong Xu. Anomalous Transport Induced by Non-Hermitian Anomalous Berry Connection in Non-Hermitian Systems[J]. Chin. Phys. Lett., 2022, 39(1): 100304
[7] Yunqing Ouyang, Qing-Rui Wang, Zheng-Cheng Gu, and Yang Qi. Computing Classification of Interacting Fermionic Symmetry-Protected Topological Phases Using Topological Invariants[J]. Chin. Phys. Lett., 2021, 38(12): 100304
[8] Kun Luo, Wei Chen, Li Sheng, and D. Y. Xing. Random-Gate-Voltage Induced Al'tshuler–Aronov–Spivak Effect in Topological Edge States[J]. Chin. Phys. Lett., 2021, 38(11): 100304
[9] Zhuo Cheng and Zhenhua Yu. Supervised Machine Learning Topological States of One-Dimensional Non-Hermitian Systems[J]. Chin. Phys. Lett., 2021, 38(7): 100304
[10] Z. Z. Zhou, H. J. Liu, G. Y. Wang, R. Wang, and X. Y. Zhou. Dual Topological Features of Weyl Semimetallic Phases in Tetradymite BiSbTe$_{3}$[J]. Chin. Phys. Lett., 2021, 38(7): 100304
[11] X. M. Yang , L. Jin, and Z. Song. Topological Knots in Quantum Spin Systems[J]. Chin. Phys. Lett., 2021, 38(6): 100304
[12] Gang-Feng Guo, Xi-Xi Bao, Lei Tan, and Huai-Qiang Gu. Phase-Modulated 2D Topological Physics in a One-Dimensional Ultracold System[J]. Chin. Phys. Lett., 2021, 38(4): 100304
[13] Tianyu Li, Yong-Sheng Zhang, and Wei Yi. Two-Dimensional Quantum Walk with Non-Hermitian Skin Effects[J]. Chin. Phys. Lett., 2021, 38(3): 100304
[14] Qian Sui, Jiaxin Zhang, Suhua Jin, Yunyouyou Xia, and Gang Li. Model Hamiltonian for the Quantum Anomalous Hall State in Iron-Halogenide[J]. Chin. Phys. Lett., 2020, 37(9): 100304
[15] Kaixuan Zhang, Yongping Du, Pengdong Wang, Laiming Wei, Lin Li, Qiang Zhang, Wei Qin, Zhiyong Lin, Bin Cheng, Yifan Wang, Han Xu, Xiaodong Fan, Zhe Sun, Xiangang Wan, and Changgan Zeng. Butterfly-Like Anisotropic Magnetoresistance and Angle-Dependent Berry Phase in a Type-II Weyl Semimetal WP$_{2}$[J]. Chin. Phys. Lett., 2020, 37(9): 100304
Viewed
Full text


Abstract