Chin. Phys. Lett.  2013, Vol. 30 Issue (1): 017801    DOI: 10.1088/0256-307X/30/1/017801
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Dosimetric Characteristics of a LKB:Cu,Mg Solid Thermoluminescence Detector
Yasser Saleh Mustafa Alajerami1,2**, Suhairul Hashim1, Ahmad Termizi Ramli1, Muneer Aziz Saleh1, Ahmad Bazlie Bin Abdul Kadir3, Mohd. Iqbal Saripan4
1Department of Physics, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
2Department of Medical Radiography, Al-Azhar University, Gaza Strip, Palestine
3Secondary Standard Dosimetery Laboratory, Malaysian Nuclear Agency, 4300 Kajang Selangor, Malaysia
4Faculty of Engineering, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
Cite this article:   
Yasser Saleh Mustafa Alajerami, Suhairul Hashim, Ahmad Termizi Ramli et al  2013 Chin. Phys. Lett. 30 017801
Download: PDF(579KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We present the main thermoluminescence characteristics of a newly borate glass dosimeter modified with lithium and potassium carbonate (LKB) and co-doped with CuO and MgO. An enhancement of about three times has been shown with the increment of 0.1mol% MgO as a co-dopant impurity. The effects of dose linearity, storage capacity, effective atomic number and energy dose response are studied. The proposed dosimeter shows a simple glow curve, good linearity up to 103 Gy, close effective atomic number and photon energy independence. The current results suggest using the proposed dosimeter in different dosimetric applications.
Received: 24 September 2012      Published: 04 March 2013
PACS:  78.60.Kn (Thermoluminescence)  
  78.55.Qr (Amorphous materials; glasses and other disordered solids)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/1/017801       OR      https://cpl.iphy.ac.cn/Y2013/V30/I1/017801
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yasser Saleh Mustafa Alajerami
Suhairul Hashim
Ahmad Termizi Ramli
Muneer Aziz Saleh
Ahmad Bazlie Bin Abdul Kadir
Mohd. Iqbal Saripan
[1] Ginther R J and Kirk R D 1957 J. Electrochem. Soc. 104 365
[2] Park K S, Ahna J K, Kim D J, Kim H K, Hwang Y H, Kim D S, Park Y, Park M H, Yoon J J and Leem J Y 2003 J. Cryst. Growth 249 483
[3] Rojas S S, Yukimitu K, de Camargo A S S, Nunes L A O and Hernandes A C 2006 J. Non-Cryst. Solids 352 3608
[4] Xiong Z, Ding P, Tang Q, Chen J and Shi W 2011 Adv. Mater. Res. 160-162 252
[5] Zhou Y L, Zhang X S, Xu J P et al 2012 Chin. Phys. B 21 066301
[6] Yu B K, Zhu C S, Qiu J R et al 2004 Chin. Phys. 13 968
[7] Schulman J H and Kirk R D 1967 West EJ Luminescence Dosimetry (Standford U.S.A.June 1965) CONF-650637 p 113
[8] Takenaga M, Yamamoto O and Yamashita T 1980 Nucl. Instrum. Methods 175 77
[9] Alajerami Y, Hashim S, Saridan W and Ramli A T 2012 Physica B 407 2390
[10] Puppalwar S P, Dhoble S J, Dhoble N S and Animesh K 2012 Nucl. Instrum. Methods B 274 167
[11] Zhang F J, Meng L J, Gutan V B et al 2006 Chin. Phys. 15 1883
[12] Li H J, Cheng Y, Tang Q et al 2008 Acta Phys. Sin. 57 7900 (in Chinese)
[13] Faiz M Khan 1994 The Physics of Radiation Therapy (Maryland: Williams & Wilkins) chap 1 p 106
[14] Furetta C, Prokic M, Salamon R, Prokic V and Kitis G 2001 Nucl. Instrum. Methods A 456 411
[15] Prokie M 2002 Radiat. Protec. Dosim. 100 265
[16] Prokic M 2001 Radiat Meas. 33 393
[17] Lakshmanan A R, Bhuwan Ch and Bhat R C 1982 Radiat. Prot. Dosim. 2 231
[18] Chen R 1969 J. Electrochem. Soc. 116 1254
[19] Grossweiner L G 1953 J. Appl. Phys. 24 1306
[20] Lushchik C B 1955 Dokl. Akad. Nauk. SSSR 101 641
[21] Garlick G F J and Gibson A F 1948 Proc. Phys. Soc. 60 574
Related articles from Frontiers Journals
[1] S. İflazoğlu, V. E. Kafadar, B. Yazici, A. N. Yazici. Thermoluminescence Kinetic Parameters of TLD-600 and TLD-700 after $^{252}$Cf Neutron+Gamma and $^{90}$Sr-$^{90}$Y Beta Radiations[J]. Chin. Phys. Lett., 2017, 34(1): 017801
[2] Vural E. Kafadar, Metin Bedir, A. Necmeddin Yazıcı, Tülin Günal . The Analysis of Main Dosimetric Glow Peaks in CaF2:Tm (TLD-300)[J]. Chin. Phys. Lett., 2013, 30(5): 017801
[3] Hüseyin Toktamiş, and A. Necmeddin Yazici. Effects of Annealing on Thermoluminescence Peak Positions and Trap Depths of Synthetic and Natural Quartz by Means of the Various Heating Rate Method[J]. Chin. Phys. Lett., 2012, 29(8): 017801
[4] H. Wagiran, I. Hossain, D. Bradley, A. N. H. Yaakob, T. Ramli. Thermoluminescence Responses of Photon and Electron Irradiated Ge- and Al-Doped SiO2 Optical Fibres[J]. Chin. Phys. Lett., 2012, 29(2): 017801
[5] ZHANG Ming-Jian, LIU Fu-Sheng, TIAN Chun-Ling, SUN Yan-Yun. Multi-Shock Compression of Dense Hydrogen--Helium Mixture Beyond 100GPa[J]. Chin. Phys. Lett., 2006, 23(8): 017801
[6] Metin Bedir, Mustafa Ö, ztas, A. Necmeddin Yazici, E. Vural Kafadar. Characterization of Undoped and Cu-Doped ZnO Thin Films Deposited on Glass Substrates by Spray Pyrolysis[J]. Chin. Phys. Lett., 2006, 23(4): 017801
[7] KUANG Jin-Yong, LIU Ying-Liang. Trapping Effects in CdSiO3:In3+ Long Afterglow Phosphor[J]. Chin. Phys. Lett., 2006, 23(1): 017801
[8] Vijay Singh, ZHU Jun-Jie, T. K. Gundu Rao, Manoj Tiwari, PAN Hong-Cheng. Luminescence and ESR Studies of CaS:Dy Phosphor[J]. Chin. Phys. Lett., 2005, 22(12): 017801
[9] LIU Bo, SHI Chao-Shu, TAO Ye, XIAO Zhi-Guo. Luminescence Kinetic Model for Long-Afterglow Phosphor (Sr0.5Ca1.5)MgSi2O7:Eu2+,Dy3+[J]. Chin. Phys. Lett., 2005, 22(5): 017801
Viewed
Full text


Abstract