Chin. Phys. Lett.  2013, Vol. 30 Issue (1): 017302    DOI: 10.1088/0256-307X/30/1/017302
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
High Deep-Ultraviolet Quantum Efficiency GaN P–I–N Photodetectors with Thin P-GaN Contact Layer
LIAN Hai-Feng, WANG Guo-Sheng, LU Hai**, REN Fang-Fang, CHEN Dun-Jun, ZHANG Rong, ZHENG You-Dou
Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials, and School of Electronic Science and Engineering, Nanjing University, Nanjing 210093
Cite this article:   
LIAN Hai-Feng, WANG Guo-Sheng, LU Hai et al  2013 Chin. Phys. Lett. 30 017302
Download: PDF(629KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract GaN ultraviolet (UV) p-i-n photodetectors (PDs) with a 40 nm thin p-GaN contact layer are fabricated on sapphire substrates, which exhibit enhanced quantum efficiency especially in a deep-UV wavelength range. The PDs show good rectification behavior and low dark current in pA level for reverse bias up to ?10 V. Under zero bias, the maximum quantum efficiency of the PD at 360 nm is close to 59.4% with a UV/visible rejection ratio more than 4 orders of magnitude. Even at a short wavelength of 280 nm, the quantum efficiency of the PD is still around 47.5%, which is considerably higher than that of a control device with a thicker p-GaN contact layer. The room temperature thermal noise limited detectivity of the PD is calculated to be ~4.96×1014 cm?Hz1/2W?1.
Received: 09 August 2012      Published: 04 March 2013
PACS:  73.40.Kp (III-V semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions)  
  85.60.Gz (Photodetectors (including infrared and CCD detectors))  
  81.05.Ea (III-V semiconductors)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/1/017302       OR      https://cpl.iphy.ac.cn/Y2013/V30/I1/017302
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LIAN Hai-Feng
WANG Guo-Sheng
LU Hai
REN Fang-Fang
CHEN Dun-Jun
ZHANG Rong
ZHENG You-Dou
[1] Razeghi M 2002 Proc. IEEE 90 1006
[2] Walker D, Zhang X, Kung P, Saxler A, Javadpour S, Xu J and Razeghi M 1996 Appl. Phys. Lett. 68 2100
[3] Butun S, G?kkavas M, Yu H B and Ozbay E 2006 Appl. Phys. Lett. 89 073503
[4] Xie F, Lu H, Chen D J, Xiu X Q, Zhao H, Zhang R and Zheng Y D 2011 IEEE Electron Device Lett. 32 1260
[5] Zhou Y, Ahyi C, Tin C C, Williams J and Park M 2007 Appl. Phys. Lett. 90 121118
[6] Sheu J K, Lee M L, Tun C J and Lin S W 2006 Appl. Phys. Lett. 88 043506
[7] Butun B, Tut T, Ulker E, Yelboga T and Ozbay E 2008 Appl. Phys. Lett. 92 033507
[8] Zhang Y, Shen S C, Kim H J, Choi S and Ryou J H 2009 Appl. Phys. Lett. 94 221109
[9] Biyikli N, Kimukin I, Aytur O and Ozbay E 2004 IEEE Photon. Technol. Lett. 16 1718
[10] Chiou Y C 2009 Semicond. Sci. Technol. 24 055004
[11] Yang Y and Cao X A 2009 J. Vac. Sci. Technol. B 27 2337
[12] Hovel H J and Cuomo J J 1972 Appl. Phys. Lett. 20 71
[13] Lin J C, Su K Y, Chang S J, Lan W H, Chen W R, Huang K C, Cheng Y C and Lin W J 2008 IEEE Photon. Technol. Lett. 20 1255
[14] Morko? H, Carlo A D and Cingolani R 2002 Solid-State Electron. 46 157
[15] Collins C J, Li T, Lambert D J H, Wong M M, Dupuis R D and Campell J C 2000 Appl. Phys. Lett. 77 2810
[16] Jiang H and Egawa T 2008 Jpn. J. Appl. Phys. 47 1541
Related articles from Frontiers Journals
[1] Yu Zhao, Yan Teng, Jing-Jun Miao, Qi-Hua Wu, Jing-Jing Gao, Xin Li, Xiu-Jun Hao, Ying-Chun Zhao, Xu Dong, Min Xiong, Yong Huang. Mid-Infrared InAs/GaSb Superlattice Planar Photodiodes Fabricated by Metal–Organic Chemical Vapor Deposition *[J]. Chin. Phys. Lett., 0, (): 017302
[2] Yu Zhao, Yan Teng, Jing-Jun Miao, Qi-Hua Wu, Jing-Jing Gao, Xin Li, Xiu-Jun Hao, Ying-Chun Zhao, Xu Dong, Min Xiong, Yong Huang. Mid-Infrared InAs/GaSb Superlattice Planar Photodiodes Fabricated by Metal–Organic Chemical Vapor Deposition[J]. Chin. Phys. Lett., 2020, 37(6): 017302
[3] SiQin-GaoWa Bao, Jie-Jie Zhu, Xiao-Hua Ma, Bin Hou, Ling Yang, Li-Xiang Chen, Qing Zhu, Yue Hao. Effects of Low-Damage Plasma Treatment on the Channel 2DEG and Device Characteristics of AlGaN/GaN HEMTs[J]. Chin. Phys. Lett., 2020, 37(2): 017302
[4] Zhi-Yu Lin, Zhi-Bin Chen, Jin-Cheng Zhang, Sheng-Rui Xu, Teng Jiang, Jun Luo, Li-Xin Guo, Yue Hao. Polar Dependence of Threading Dislocation Density in GaN Films Grown by Metal-Organic Chemical Vapor Deposition[J]. Chin. Phys. Lett., 2018, 35(2): 017302
[5] Han-Han Lu, Jing-Ping Xu, Lu Liu. Interfacial and Electrical Properties of GaAs Metal-Oxide-Semiconductor Capacitor with ZrAlON as the Interfacial Passivation Layer[J]. Chin. Phys. Lett., 2017, 34(4): 017302
[6] Xue-Feng Zheng, Ao-Chen Wang, Xiao-Hui Hou, Ying-Zhe Wang, Hao-Yu Wen, Chong Wang, Yang Lu, Wei Mao, Xiao-Hua Ma, Yue Hao. Influence of the Diamond Layer on the Electrical Characteristics of AlGaN/GaN High-Electron-Mobility Transistors[J]. Chin. Phys. Lett., 2017, 34(2): 017302
[7] Lai Wang, Xiao Meng, Jung-Hoon Song, Tae-Soo Kim, Seung-Young Lim, Zhi-Biao Hao, Yi Luo, Chang-Zheng Sun, Yan-Jun Han, Bing Xiong, Jian Wang, Hong-Tao Li. A Method to Obtain Auger Recombination Coefficient in an InGaN-Based Blue Light-Emitting Diode[J]. Chin. Phys. Lett., 2017, 34(1): 017302
[8] Jun Luo, Sheng-Lei Zhao, Zhi-Yu Lin, Jin-Cheng Zhang, Xiao-Hua Ma, Yue Hao. Enhancement of Breakdown Voltage in AlGaN/GaN High Electron Mobility Transistors Using Double Buried p-Type Layers[J]. Chin. Phys. Lett., 2016, 33(06): 017302
[9] LV Qian-Qian, YE Han, YIN Dong-Dong, YANG Xiao-Hong, HAN Qin. An Array Consisting of 10 High-Speed Side-Illuminated Evanescently Coupled Waveguide Photodetectors Each with a Bandwidth of 20 GHz[J]. Chin. Phys. Lett., 2015, 32(12): 017302
[10] TANG Xiao-Yu, LU Ji-Wu, ZHANG Rui, WU Wang-Ran, LIU Chang, SHI Yi, HUANG Zi-Qian, KONG Yue-Chan, ZHAO Yi. Positive Bias Temperature Instability and Hot Carrier Injection of Back Gate Ultra-thin-body In0.53Ga0.47As-on-Insulator n-Channel Metal-Oxide-Semiconductor Field-Effect Transistor[J]. Chin. Phys. Lett., 2015, 32(11): 017302
[11] GUO Hong-Yu, LV Yuan-Jie, GU Guo-Dong, DUN Shao-Bo, FANG Yu-Long, ZHANG Zhi-Rong, TAN Xin, SONG Xu-Bo, ZHOU Xing-Ye, FENG Zhi-Hong. High-Frequency AlGaN/GaN High-Electron-Mobility Transistors with Regrown Ohmic Contacts by Metal-Organic Chemical Vapor Deposition[J]. Chin. Phys. Lett., 2015, 32(11): 017302
[12] LIU Shi-Ming, XIAO Hong-Ling, WANG Quan, YAN Jun-Da, ZHAN Xiang-Mi, GONG Jia-Min, WANG Xiao-Liang, WANG Zhan-Guo. InxGa1?xN/GaN Multiple Quantum Well Solar Cells with Conversion Efficiency of 3.77%[J]. Chin. Phys. Lett., 2015, 32(08): 017302
[13] FENG Zhi-Hong, WANG Xian-Bin, WANG Li, LV Yuan-Jie, FANG Yu-Long, DUN Shao-Bo, ZHAO Zheng-Ping. Ti/Al Based Ohmic Contact to As-Grown N-Polar GaN[J]. Chin. Phys. Lett., 2015, 32(08): 017302
[14] NIU Bin, WANG Yuan, CHENG Wei, XIE Zi-Li, LU Hai-Yan, CHANG Long, XIE Jun-Ling. Common Base Four-Finger InGaAs/InP Double Heterojunction Bipolar Transistor with Maximum Oscillation Frequency 535 GHz[J]. Chin. Phys. Lett., 2015, 32(07): 017302
[15] WANG Xiao-Feng, SHAO Zhen-Guang, CHEN Dun-Jun, LU Hai, ZHANG Rong, ZHENG You-Dou. Forward Current Transport Mechanisms of Ni/Au–InAlN/AlN/GaN Schottky Diodes[J]. Chin. Phys. Lett., 2014, 31(05): 017302
Viewed
Full text


Abstract