CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
High Deep-Ultraviolet Quantum Efficiency GaN P–I–N Photodetectors with Thin P-GaN Contact Layer |
LIAN Hai-Feng, WANG Guo-Sheng, LU Hai**, REN Fang-Fang, CHEN Dun-Jun, ZHANG Rong, ZHENG You-Dou |
Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials, and School of Electronic Science and Engineering, Nanjing University, Nanjing 210093
|
|
Cite this article: |
LIAN Hai-Feng, WANG Guo-Sheng, LU Hai et al 2013 Chin. Phys. Lett. 30 017302 |
|
|
Abstract GaN ultraviolet (UV) p-i-n photodetectors (PDs) with a 40 nm thin p-GaN contact layer are fabricated on sapphire substrates, which exhibit enhanced quantum efficiency especially in a deep-UV wavelength range. The PDs show good rectification behavior and low dark current in pA level for reverse bias up to ?10 V. Under zero bias, the maximum quantum efficiency of the PD at 360 nm is close to 59.4% with a UV/visible rejection ratio more than 4 orders of magnitude. Even at a short wavelength of 280 nm, the quantum efficiency of the PD is still around 47.5%, which is considerably higher than that of a control device with a thicker p-GaN contact layer. The room temperature thermal noise limited detectivity of the PD is calculated to be ~4.96×1014 cm?Hz1/2W?1.
|
|
Received: 09 August 2012
Published: 04 March 2013
|
|
PACS: |
73.40.Kp
|
(III-V semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions)
|
|
85.60.Gz
|
(Photodetectors (including infrared and CCD detectors))
|
|
81.05.Ea
|
(III-V semiconductors)
|
|
|
|
|
[1] Razeghi M 2002 Proc. IEEE 90 1006 [2] Walker D, Zhang X, Kung P, Saxler A, Javadpour S, Xu J and Razeghi M 1996 Appl. Phys. Lett. 68 2100 [3] Butun S, G?kkavas M, Yu H B and Ozbay E 2006 Appl. Phys. Lett. 89 073503 [4] Xie F, Lu H, Chen D J, Xiu X Q, Zhao H, Zhang R and Zheng Y D 2011 IEEE Electron Device Lett. 32 1260 [5] Zhou Y, Ahyi C, Tin C C, Williams J and Park M 2007 Appl. Phys. Lett. 90 121118 [6] Sheu J K, Lee M L, Tun C J and Lin S W 2006 Appl. Phys. Lett. 88 043506 [7] Butun B, Tut T, Ulker E, Yelboga T and Ozbay E 2008 Appl. Phys. Lett. 92 033507 [8] Zhang Y, Shen S C, Kim H J, Choi S and Ryou J H 2009 Appl. Phys. Lett. 94 221109 [9] Biyikli N, Kimukin I, Aytur O and Ozbay E 2004 IEEE Photon. Technol. Lett. 16 1718 [10] Chiou Y C 2009 Semicond. Sci. Technol. 24 055004 [11] Yang Y and Cao X A 2009 J. Vac. Sci. Technol. B 27 2337 [12] Hovel H J and Cuomo J J 1972 Appl. Phys. Lett. 20 71 [13] Lin J C, Su K Y, Chang S J, Lan W H, Chen W R, Huang K C, Cheng Y C and Lin W J 2008 IEEE Photon. Technol. Lett. 20 1255 [14] Morko? H, Carlo A D and Cingolani R 2002 Solid-State Electron. 46 157 [15] Collins C J, Li T, Lambert D J H, Wong M M, Dupuis R D and Campell J C 2000 Appl. Phys. Lett. 77 2810 [16] Jiang H and Egawa T 2008 Jpn. J. Appl. Phys. 47 1541 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|