Chin. Phys. Lett.  2013, Vol. 30 Issue (1): 014203    DOI: 10.1088/0256-307X/30/1/014203
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Effect of Laser Pulse Width on the Laser Lift-off Process of GaN Films
CHEN Ming1,2, ZHANG Jiang-Yong3**, LV Xue-Qin2, YING Lei-Ying3, ZHANG Bao-Ping1,2,3**
1Department of Electronic Engineering, Xiamen University, Xiamen 361005
2Pen-Tung Sah Institute of Micro-Nano Science and technology, Xiamen University, Xiamen 361005
3Laboratory of Micro/Nano Optoelectronics, Department of Physics, Xiamen University, Xiamen 361005
Cite this article:   
CHEN Ming, ZHANG Jiang-Yong, LV Xue-Qin et al  2013 Chin. Phys. Lett. 30 014203
Download: PDF(961KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Laser lift-off (LLO), by which GaN is separated from sapphire, is demonstrated to be a promising technique for advanced GaN-based optoelectronic devices. Its physical insight, however, is still not fully understood. We study systematically the effect of laser pulse width on the LLO process and the property of GaN. To estimate accurately the temperature distribution and the decomposed thickness of GaN, fluctuation in the pulse laser energy is taken into account. It is found that the temperature at the interface is increased in a higher speed for a narrower pulse width. In addition, less damage to the GaN film is expected for a narrower pulse width owing to the smaller heated area, lower transient temperature and lower N2 vapor pressure encountered during LLO. Some experimental results reported in literature are explained well. Our results are useful in understanding the effect of laser pulse width and can be taken as references in LLO of GaN/sapphire structures.
Received: 27 July 2012      Published: 04 March 2013
PACS:  42.70.-a (Optical materials)  
  44.10.+a  
  85.30.-z (Semiconductor devices)  
  85.60.-q (Optoelectronic devices)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/1/014203       OR      https://cpl.iphy.ac.cn/Y2013/V30/I1/014203
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
CHEN Ming
ZHANG Jiang-Yong
LV Xue-Qin
YING Lei-Ying
ZHANG Bao-Ping
[1] Huang S Y, Horng R H, Kuo H C and Wuu D S 2007 J. Electrochem. Soc. 154 H962
[2] Chen M, Liu W J, Cai L E, Zhang J Y, Sun L, Liang M M, Hu X L, Cai X M, Jiang F, Lv X Q, Ying L Y, Qiu Z R and Zhang B P 2012 ECS. Solid State Lett. 1 2
[3] Wong W S, Cho Y, Weber E R, Sands T, Yu K M, Kruger J, Wengrow A B and Cheung N W 1999 Appl. Phys. Lett. 75 1887
[4] Tan B S, Yuan S and Kang X J 2004 Appl. Phys. Lett. 84 2757
[5] Ho H P, Lo K C, Siu G G, Surya C, Li K F and Cheah K W 2003 Mater. Chem. Phys. 81 99
[6] Ambacher O, Brandt M S, Dimitov R, Metzger T, Stutzmann M, Fischer R A, Miehr A, Bergmaier A and Dollinger G 1996 J. Vac. Sci. Technol. B. 14 3532
[7] Morimoto Y 1974 J. Electrochem. Soc. 121 1383
[8] Ueda T, Ishida M and Yuri M 2011 Jpn. J. Appl. Phys. 50 041001
[9] Tong X L, Li L, Zhang D S, Dai Y T, Lv D J, Ling K, Liu Z X, Lu P X, Yang G, Yang Z Y and Long H 2009 J. Phys. D: Appl. Phys. 42 045414
[10] Chen W H, Kang X N, Hu X D, Lee R, Wang Y J, Yu T J, Yang Z J and Zhang G Y 2007 Appl. Phys. Lett. 91 121114
[11] Stach E A, Kelsch M, Nelson E C, Wong W S, Sands T and Cheung N W 2000 Appl. Phys. Lett. 77 1819
[12] Cheng J H, Wu Y C S, Peng W C and Ouyang H 2009 J. Electrochem. Soc. 156 H640
[13] Karpinski J, Jun J and Porowski S 1984 J. Cryst. Growth 66 1
[14] Wong W S, Kneissl M, Mei P, Treat D W, Teepe M and Johnson N M 2000 The 27th International Symposium on Compound Semiconductors (California Monterey 2–5 October 2000) p 377
[15] Wang T, F Yuan, Guo X, Shen G D and Cui Z Z 2007 Thin Solid Films 515 3854
[16] Carslaw H S and Jaeger J C 1959 Conduction of Heat in Solids (Oxford: Oxford University Press)
[17] Liu L and Edgar J H 2002 Mater. Sci. Eng. 37 61
[18] Bret T, Wagner V, Martin D, Hoffmann P and Llegems M 2002 Phys. Status Solidi A 194 559
[19] Wu Y C S, Cheng J H, Peng W C and Ouyang H 2007 Appl. Phys. Lett. 90 251110
[20] Chen W H, Hu X D, Shan X D, Kang X N, Zhou X R, Zhang X M, Yu T J, Yang Z J, You L P, Xu K and Zhang G Y 2009 Chin. Phys. Lett. 26 016203
Related articles from Frontiers Journals
[1] Wen-Wen Cui, Xiao-Wei Xing, Yue-Qian Chen, Yue-Jia Xiao, Han Ye, and Wen-Jun Liu. Tunable Dual-Wavelength Fiber Laser in a Novel High Entropy van der Waals Material[J]. Chin. Phys. Lett., 2023, 40(2): 014203
[2] Jiancai Xue , Limin Lin , Zhang-Kai Zhou, and Xue-Hua Wang . Semi-Ellipsoid Nanoarray for Angle-Independent Plasmonic Color Printing[J]. Chin. Phys. Lett., 2020, 37(11): 014203
[3] Meng-Yao Yan , Bi-Jun Xu, Zhi-Chao Sun , Zhen-Dong Wu , Bai-Rui Wu . Terahertz Perfect Absorber Based on Asymmetric Open-Loop Cross-Dipole Structure[J]. Chin. Phys. Lett., 2020, 37(6): 014203
[4] Meng-Yao Yan , Bi-Jun Xu, Zhi-Chao Sun , Zhen-Dong Wu , Bai-Rui Wu . Terahertz Perfect Absorber Based on Asymmetric Open-Loop Cross-Dipole Structure[J]. Chin. Phys. Lett., 0, (): 014203
[5] Shuai-Meng Wang, Xiao-Hong Sun, De-Li Chen, Fan Wu. GaP-Based High-Efficiency Elliptical Cylinder Metasurface in Visible Light[J]. Chin. Phys. Lett., 2020, 37(5): 014203
[6] Xing-Yong Huang, Da-Qin Chen, Bi-Zhou Shen, Hai-Zhi Song. Preparation and 1.06μm Fluorescence Decay of Nd$^{3+}$-Doped Glass Ceramics Containing NaYF$_{4}$ Nanocrystallites[J]. Chin. Phys. Lett., 2019, 36(8): 014203
[7] Zong-Peng Song, Hai-Ou Zhu, Wen-Tao Shi, Da-Lin Sun, Shuang-Chen Ruan. Ultrafast charge transfer in dual graphene-WS$_{2}$ van der Waals quadrilayer heterostructures[J]. Chin. Phys. Lett., 2018, 35(12): 014203
[8] Lu Li, Rui-Dong Lv, Si-Cong Liu, Zhen-Dong Chen, Jiang Wang, Yong-Gang Wang, Wei Ren. Using Reduced Graphene Oxide to Generate Q-Switched Pulses in Er-Doped Fiber Laser[J]. Chin. Phys. Lett., 2018, 35(11): 014203
[9] Sohail Abdul Jalil, Mahreen Akram, Gwanho Yoon, Ayesha Khalid, Dasol Lee, Niloufar Raeis-Hosseini, Sunae So, Inki Kim, Qazi Salman Ahmed, Junsuk Rho, Muhammad Qasim Mehmood. High Refractive Index Ti$_3$O$_5$ Films for Dielectric Metasurfaces[J]. Chin. Phys. Lett., 2017, 34(8): 014203
[10] A. R. Muhammad, M. T. Ahmad, R. Zakaria, H. R. A. Rahim, S. F. A. Z. Yusoff, K. S. Hamdan, H. H. M. Yusof, H. Arof, S. W. Harun.. Q-Switching Pulse Operation in 1.5-μm Region Using Copper Nanoparticles as Saturable Absorber[J]. Chin. Phys. Lett., 2017, 34(3): 014203
[11] N. A. A. Kadir, E. I. Ismail, A. A. Latiff, H. Ahmad, H. Arof, S. W. Harun. Transition Metal Dichalcogenides (WS$_{2}$ and MoS$_{2}$) Saturable Absorbers for Mode-Locked Erbium-Doped Fiber Lasers[J]. Chin. Phys. Lett., 2017, 34(1): 014203
[12] M. F. M. Rusdi, A. A. Latiff, E. Hanafi, M. B. H. Mahyuddin, H. Shamsudin, K. Dimyati, S. W. Harun. Molybdenum Disulphide Tape Saturable Absorber for Mode-Locked Double-Clad Ytterbium-Doped All-Fiber Laser Generation[J]. Chin. Phys. Lett., 2016, 33(11): 014203
[13] Yang-Yang Dun, Ping Li, Xiao-Han Chen, Bao-Min Ma. High-Power Passively Q-Switched Nd:YAG Laser at 1112nm with a Cr$^{4+}$:YAG Saturable Absorber[J]. Chin. Phys. Lett., 2016, 33(02): 014203
[14] XU Ling, TAN Yi-Dong, ZHANG Shu-Lian, SUN Li-Qun. Measurement of Refractive Index Ranging from 1.42847 to 2.48272 at 1064 nm Using a Quasi-Common-Path Laser Feedback System[J]. Chin. Phys. Lett., 2015, 32(09): 014203
[15] YANG Qi, XU Shan-Hui, LI Can, YANG Chang-Sheng, FENG Zhou-Ming, XIAO Yu, HUANG Xiang, YANG Zhong-Min. A Single-Frequency Linearly Polarized Fiber Laser Using a Newly Developed Heavily Tm3+-Doped Germanate Glass Fiber at 1.95 μm[J]. Chin. Phys. Lett., 2015, 32(09): 014203
Viewed
Full text


Abstract