Chin. Phys. Lett.  2012, Vol. 29 Issue (9): 098901    DOI: 10.1088/0256-307X/29/9/098901
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
A New Definition of Modularity for Community Detection in Complex Networks
YE Zhen-Qing1,2, ZHANG Ke3, HU Song-Nian1, YU Jun1,2**
1James D. Watson Institute of Genome Sciences, College of Life Sciences, Zhejiang University, Hangzhou 310058
2CAS Key Laboratory of Genome Sciences and Information, Beijing Institute Genomics, Chinese Academy of Sciences, Beijing 100029
3Medical Systems Biology Research Center, Tsinghua University School of Medicine, Beijing 100084
Cite this article:   
YE Zhen-Qing, ZHANG Ke, HU Song-Nian et al  2012 Chin. Phys. Lett. 29 098901
Download: PDF(586KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We propose a new definition of modularity, i.e. the Qd function, for network analysis, which takes the edge density and topological structure of modules into account and is different from the original strategy of simply calculating the number of edges (the definition of modularity Q introduced by Newman and Girvan). Armed with this novel quality function Qd, we implement an adaptive clustering algorithm for process optimization, and apply our strategy to several synthetic and real-world networks. The results of our exercises demonstrate a better performance in extracting accurate community ingredients from complex networks.
Received: 18 November 2011      Published: 01 October 2012
PACS:  89.75.Hc (Networks and genealogical trees)  
  02.10.Ox (Combinatorics; graph theory)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/9/098901       OR      https://cpl.iphy.ac.cn/Y2012/V29/I9/098901
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
YE Zhen-Qing
ZHANG Ke
HU Song-Nian
YU Jun
[1] Strogatz S H 2001 Nature 410 268
[2] Albert R and Barabási A L 2002 Rev. Mod. Phys. 74 47
[3] Mason O and Verwoerd M 2007 IET Syst. Biol. 1(2) 89
[4] Newman M E J 2008 Phys. Today 61 33
[5] Newman M E J 2004 Eur. Phys. J. B 38 321
[6] Fortunato S 2010 Phys. Rep. 486 75
[7] Palla G, Derenyi I, Farkas I and Vicsek T 2005 Nature 435 814
[8] Girvan M and Newman M E J 2002 Proc. Natl. Acad. Sci. USA 99 7821
[9] Guimera R and Amaral L A N 2005 Nature 433 895
[10] Reichardt J and Bornholdt S 2006 Phys. Rev. E 74 016110
[11] Rosvall M and Bergstrom C T 2008 Proc. Natl. Acad. Sci. USA 105 1118
[12] Rosvall M and Bergstrom C T 2007 Proc. Natl. Acad. Sci. USA 104 7327
[13] Newman M E J 2006 Phys. Rev. E 74 036104
[14] Mason A P, Jukka-Pekka O and Perter J M 2009 arXiv:0902.3788
[15] Newman M E J and Grivan M 2004 Phys. Rev. E 69 026113
[16] Newman M E J 2006 Proc. Natl. Acad. Sci. USA 103 8577
[17] Newman M E J 2004 Phys. Rev. E 69 066133
[18] Danon L, Diaz-Guilera A, Duch J and Arenas A 2005 J. Stat. Mech. P09008
[19] Duch J and Arenas A 2005 Phys. Rev. E 72 027104
[20] Hastings M 2006 Phys. Rev. E 74 035102
[21] Raghavan U N, Albert R, Kumara S 2007 Phys. Rev. E 76 036106
[22] Ye Z, Hu S and Yu J 2008 Phys. Rev. E 78 046115
[23] Schuetz P and Caflisch A 2008 Phys. Rev. E 77 046112
[24] Barber M J and Clark J W 2009 Phys. Rev. E 80 026129
[25] Fortunato S and Barthelemy M 2007 Proc. Natl. Acad. Sci. USA 104 36
[26] Kumpula J M, Saramaki J, Kaski K and Kertesz J 2007 Eur. Phys. J. B 56 41
[27] Ruan J and Zhang W 2008 Phys. Rev. E 77 016104
[28] Arenas A, Fernandez A and Gomes S 2008 New J. Phys. 10 053039
[29] Fronczak A, Fronczak P and Holyst J A 2004 Phys. Rev. E 70 056110
[30] Lancichinetti A, Fortunato S and Radicchi F 2008 Phys. Rev. E 78 046110
[31] Lancichinetti A and Fortunato S 2009 Phys. Rev. E 80 056117
[32] Lancichinetti A and Fortunato S 2011 Phys. Rev. E 84 066122
Related articles from Frontiers Journals
[1] Qing-Xian Wang, Jun-Jie Zhang, Xiao-Yu Shi, Ming-Sheng Shang. User Heterogeneity and Individualized Recommender[J]. Chin. Phys. Lett., 2017, 34(6): 098901
[2] Wen Xiao, Chao Yang, Ya-Ping Yang, Yu-Guang Chen. Phase Transition in Recovery Process of Complex Networks[J]. Chin. Phys. Lett., 2017, 34(5): 098901
[3] Rui-Wu Niu, Gui-Jun Pan. Self-Organized Optimization of Transport on Complex Networks[J]. Chin. Phys. Lett., 2016, 33(06): 098901
[4] Liu-Hua Zhu. Effects of Reduced Frequency on Network Configuration and Synchronization Transition[J]. Chin. Phys. Lett., 2016, 33(05): 098901
[5] Xiu-Lian Xu, Chun-Ping Liu, Da-Ren He. A Collaboration Network Model with Multiple Evolving Factors[J]. Chin. Phys. Lett., 2016, 33(04): 098901
[6] Wei Zheng, Qian Pan, Chen Sun, Yu-Fan Deng, Xiao-Kang Zhao, Zhao Kang. Fractal Analysis of Mobile Social Networks[J]. Chin. Phys. Lett., 2016, 33(03): 098901
[7] Yi-Run Ruan, Song-Yang Lao, Yan-Dong Xiao, Jun-De Wang, Liang Bai. Identifying Influence of Nodes in Complex Networks with Coreness Centrality: Decreasing the Impact of Densely Local Connection[J]. Chin. Phys. Lett., 2016, 33(02): 098901
[8] HU Dong, SUN Xian, LI Ping, CHEN Yan, ZHANG Jie. Factors That Affect the Centrality Controllability of Scale-Free Networks[J]. Chin. Phys. Lett., 2015, 32(12): 098901
[9] HUANG Feng, CHEN Han-Shuang, SHEN Chuan-Sheng. Phase Transitions of Majority-Vote Model on Modular Networks[J]. Chin. Phys. Lett., 2015, 32(11): 098901
[10] BAI Liang, XIAO Yan-Dong, HOU Lv-Lin, LAO Song-Yang. Smart Rewiring: Improving Network Robustness Faster[J]. Chin. Phys. Lett., 2015, 32(07): 098901
[11] LI Ling, GUAN Ji-Hong, ZHOU Shui-Geng. Efficiency-Controllable Random Walks on a Class of Recursive Scale-Free Trees with a Deep Trap[J]. Chin. Phys. Lett., 2015, 32(03): 098901
[12] JING Xing-Li, LING Xiang, HU Mao-Bin, SHI Qing. Random Walks on Deterministic Weighted Scale-Free Small-World Networks with a Perfect Trap[J]. Chin. Phys. Lett., 2014, 31(08): 098901
[13] HU Jian-Quan, YANG Hong-Chun, YANG Yu-Ming, FU Chuan-Ji, YANG Chun, SHI Xiao-Hong, JIA Xiao. Two Typical Discontinuous Transitions Observed in a Generalized Achlioptas Percolation Process[J]. Chin. Phys. Lett., 2014, 31(07): 098901
[14] LING Xiang. Effect of Mixing Assortativity on Extreme Events in Complex Networks[J]. Chin. Phys. Lett., 2014, 31(06): 098901
[15] ZHANG Xiao-Ke, WU Jun, TAN Yue-Jin, DENG Hong-Zhong, LI Yong . Structural Robustness of Weighted Complex Networks Based on Natural Connectivity[J]. Chin. Phys. Lett., 2013, 30(10): 098901
Viewed
Full text


Abstract