CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
|
|
|
|
Performance Improvement of Ambipolar Organic Field Effect Transistors by Inserting a MoO3 Ultrathin Layer |
TIAN Hai-Jun1, CHENG Xiao-Man1,2**, ZHAO Geng2, LIANG Xiao-Yu1, DU Bo-Qun2, WU Feng2 |
1Institute of Material Physics, Key Laboratory of Display Material and Photoelectric Devices (Ministry of Education), and Tianjin Key Laboratory of Photoelectric Materials and Devices, Tianjin University of Technology, Tianjin 300384 2School of Science, Tianjin University of Technology, Tianjin 300384 |
|
Cite this article: |
TIAN Hai-Jun, CHENG Xiao-Man, ZHAO Geng et al 2012 Chin. Phys. Lett. 29 098503 |
|
|
Abstract We fabricate N,N'-ditridecylperylene-3,4,9,10-tetracarboxylic diimide and pentacene heterostructure organic field effect transistors with a MoO3 ultrathin layer between Al source-drain electrode and active layer. By inserting the MoO3 layer, the injection barrier of hole carriers is lowered and the contact resistance is reduced. Thus, the performance of the device is improved. The device shows typical ambipolar transport characteristics with effective hole mobility of 4.838×10?3 cm2/V?s and effective electron mobility of 1.909×10?3 cm2/V?s, respectively. This result indicates that using a MoO3 ultrathin 1ayer is an effective way to improve the performance of ambipolar organic field effect transistors.
|
|
Received: 29 May 2012
Published: 01 October 2012
|
|
PACS: |
85.30.Tv
|
(Field effect devices)
|
|
72.80.Le
|
(Polymers; organic compounds (including organic semiconductors))
|
|
73.40.Qv
|
(Metal-insulator-semiconductor structures (including semiconductor-to-insulator))
|
|
|
|
|
[1] Zaumseil J, Friend R H and Sirringhaus H 2006 Nat. Mater 5 69 [2] Anthopoulos T D 2007 Appl. Phys. Lett. 91 113513 [3] Saudari S R, Frail P R and Kagan C R 2009 Appl. Phys. Lett. 95 023301 [4] Smits E C P, Anthopoulos T D, Setayesh S, van Veenendaal E, Coehoorn R, Blom P W M, de Boer B and de Leeuw D M 2006 Phys. Rev. B 73 205316 [5] An M J, Seo H S, Zhang Y, Oh J D and Choi J H 2010 Appl. Phys. Lett. 97 023506 [6] Bronner M, Opitz A and Brütting W 2008 Phys. Stat. Sol. A 205 549 [7] Yamane K, Yanagi H and Hotta S 2008 Thin Solid Films 516 3157 [8] Li J F, Chang W L, Ou G P and Zhang F J 2009 Chin. Phys. B 18 3002 [9] Wang F X, Qiao X F, Xiong T and Ma D G 2008 Org. Electron. 9 985 [10] Chu C W, Li S H, Chen C W, Shrotriya V and Yang Y 2005 Appl. Phys. Lett. 87 193508 [11] Zhao G, Cheng X M, Tian H J, Du B Q and Liang X Y 2011 Chin. Phys. Lett. 28 127203 [12] Watkins N J, Yan L and Gao Y L 2002 Appl. Phys. Lett. 80 4384 [13] Chou D W, Lin Y J, Wei-Chin J H, Li Y C and Wang Y H 2011 Solid-State Electron. 64 1 [14] Watkins N J and Gao Y 2003 J. Appl. Phys. 94 1289 [15] Helander M G, Wang Z B, Qiu J and Lu Z H 2008 Appl. Phys. Lett. 93 193310 [16] Jeon P, Han K, Lee H, Kim H S, Jeong K, Cho K, Cho S W and Yi Y 2009 Synth. Met. 159 2502 [17] Ishii H, Sugiyama K, Ito E and Seki K 1999 Adv. Mater. 11 605 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|