CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
|
|
|
|
Performance Improved by Incorporating of Ru Atoms into Zr-Si Diffusion Barrier for Cu Metallization |
WANG Ying1**, SONG Zhong-Xiao2, ZHANG Mi-Lin3 |
1College of Information and Communication Engineering, Harbin Engineering University, Harbin 150001 2State-Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049 3Key Laboratory of Superlight Materials and Surface Technology (Ministry of Education), Harbin Engineering University, Harbin 150001 |
|
Cite this article: |
WANG Ying, SONG Zhong-Xiao, ZHANG Mi-Lin 2012 Chin. Phys. Lett. 29 098501 |
|
|
Abstract Thin Ru21Zr64Si15 films deposited on Si substrates by radio frequency reactive magnetron sputtering are studied and evaluated as diffusion barriers for Cu metallization. Cu/Ru21Zr64Si15/Si and Cu/Zr67Si33/Si structure samples are prepared under the same procedures for comparison. The thermal stability, phase formation, surface morphology and atomic depth profile of the Cu/Ru21Zr64Si15/Si and Cu/Zr67Si33/Si structures before and after annealing at different temperatures are investigated. In conjunction with these analyses, the Cu/Ru21Zr64Si15/Si contact system shows high thermal stability at least up to 650°C. The results obtained reveal that the incorporation of Ru atoms into the Zr67Si33 barrier layer is shown to be beneficial for improving the thermal stability of the Cu/barrier/Si contact system.
|
|
Received: 03 February 2012
Published: 01 October 2012
|
|
PACS: |
85.40.Ls
|
(Metallization, contacts, interconnects; device isolation)
|
|
68.37.-d
|
(Microscopy of surfaces, interfaces, and thin films)
|
|
81.40.Ef
|
(Cold working, work hardening; annealing, post-deformation annealing, quenching, tempering recovery, and crystallization)
|
|
68.35.-p
|
(Solid surfaces and solid-solid interfaces: structure and energetics)
|
|
|
|
|
[1] Chang C J and Chieh C M 1998 Thin Solid Films 335 146 [2] Yang W L, Wu W F and Liu D G 2001 Solid-State Electron. 45 149 [3] Zhang Y and Zhang J M 2011 Chin. Phys. B 20 086802 [4] Zhu Z M, Qian L B and Yang Y T 2011 Chin. Phys. B 20 068401 [5] Song Z X, Xu K W and Chen H 2004 Thin Solid Films 468 203 [6] Alén P, Ritala M, Arstila K, Keinonen J and Leskel? M 2005 J. Electrochem. Soc. 152 G361 [7] Rawal S, Lambers E, Nortona D P, Anderson T J and McElwee-White L 2006 J. Appl. Phys. 100 063532 [8] Brizoual L L, Guilet S, Lempérière G, Granier A, Coulon N, Lancin M and Turban G 2000 Microelectron. Eng. 50 509 [9] Damayantia M, Sritharan T, Mhaisalkar S G and Gan Z H 2006 Appl. Phys. Lett. 88 044101 [10] Aouadi S M, Shreeman P K and Williams M 2004 J. Appl. Phys. 96 3949 [11] Rawal S, Norton D P, Anderson T J 2005 Appl. Phys. Lett. 87 111902 [12] Lin S T and Lee C 2006 Appl. Surf. Sci. 253 1215 [13] Fang J S, Hsu T P and Chen G S 2004 J. Electron. Mater. 33 1176 [14] Lee S Y, Wang S C, Chen J S and Huang J L 2007 Surf. Coat. Tech. 201 9260 [15] Lin T Y, Cheng H Y, Chin T S 2007 Appl. Phys. Lett. 91 152908 [16] Lin T Y, Cheng H Y, Chin T S 2008 J. Electrochem. Soc. 155 G29 [17] Chang S Y and Lu C L 2008 J. Electrochem. Soc. 155 D234 [18] Chou Y H, Sung Y and Ou K L 2008 Electrochem. Solid-State Lett. 11 D30 [19] Rawal S, Norton D P and Ajmera H 2007 Appl. Phys. Lett. 90 051913 [20] Lee Y J, Suh B S, Rha S K, Park C O 1998 Thin Solid Films 320 141 [21] Yamauchi T, Zaima S, Mizuno K, Kitamura H, Koide Y and Yasuda Y 1991 J. Appl. Phys. 69 7050 [22] Wang Y, Zhu C C and Song Z X 2004 Microelectron. Eng. 71 69 [23] Wang Y, Cao F, Liu Y T and Ding M H 2008 Appl. Phys. Lett. 92 032108 [24] Wang Y, Cao F, Song Z X, Zhao C H 2007 Electrochem. Solid-State Lett. 10 H299 [25] Wu C Y, Lee W H, Chang S C, Cheng Y L and Wang Y L 2011 J. Electrochem. Soc. 158 H338 [26] Sari W, Eom T K, Jeon C W, Sohn H and Kim S H 2009 Electrochem. Solid-State Lett. 12 H248 [27] Fang J S, Lin J H, Chen B Y and Chin T S 2011 J. Electrochem. Soc. 158 H97 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|