CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
|
|
|
|
A Self-Aligned Process to Fabricate a Metal Electrode-Quantum Dot/Nanowire-Metal Electrode Structure with 100% Yield |
FU Ying-Chun1,2, WANG Xiao-Feng1, FAN Zhong-Chao1, YANG Xiang1, BAI Yun-Xia1, ZHANG Jia-Yong 1,2, MA Hui-Li1,2, JI An1, YANG Fu-Hua1,2** |
1Engineering Research Center for Semiconductor Integrated Technology, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083 2The State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083 |
|
Cite this article: |
FU Ying-Chun, WANG Xiao-Feng, FAN Zhong-Chao et al 2012 Chin. Phys. Lett. 29 098102 |
|
|
Abstract Using lateral phase change random access memory (PCRAM) for demonstration, we report a self-aligned process to fabricate a metal electrode-quantum dot(QD)/nanowire(NW)-metal electrode structure. Due to the good confinement and coupling between the Ge2Sb2Te5 (GST) QD and the tungsten electrodes, the device shows a threshold current and voltage as small as 2.50 μA and 1.08 V, respectively. Our process is highlighted with good controllability and repeatability with 100% yield, making it a promising fabrication process for nanoelectronics.
|
|
Received: 14 February 2012
Published: 01 October 2012
|
|
|
|
|
|
[1] Herderick E D, Reddy K M, Sample R N, Draskovic T I and Padture N P 2009 Appl. Phys. Lett. 95 203505 [2] Steinberg H, Wolf O, Faust A, Salant A, Lilach Y, Millo O and Banin U 2010 Nano Lett. 10 2416 [3] Mangin A, Anthore A, Della Rocca M L, Boulat E and Lafarge P 2009 J. Appl. Phys. 105 014313 [4] Naitoh Y, Horikawa M, Abe H and Shimizu T 2006 Nanotechnology 17 5669 [5] Iovan A, Korenivski V and Haviland D B 2006 J. Appl. Phys. 99 08E502 [6] Kim C, Kim H S, Qin H and Blick R H 2010 Nano Lett. 10 615 [7] Wolf C R, Thonke K and Sauer R 2010 Appl. Phys. Lett. 96 142108 [8] Fu W, Qin S, Liu L, Kim T H, Hellstrom S, Wang W, Liang W, Bai X, Li A P and Wang E 2011 Nano Lett. 11 1913 [9] Chen X, Yeganeh S, Qin L, Li S, Xue C, Braunschweig A B, Schatz G C, Ratner M A and Mirkin C A 2009 Nano Lett. 9 3974 [10] Bai J, Zhong X, Jiang S, Huang Y and Duan X 2010 Nat. Nanotechnol. 5 190 [11] Standley B, Bao W, Zhang H, Bruck J, Lau C N and Bockrath M 2008 Nano Lett. 8 3345 [12] Bai J, Duan X and Huang Y 2009 Nano Lett. 9 2083 [13] Xiong F, Liao A D, Estrada D and Pop E 2011 Science 332 568 [14] Ahn J K, Park K W, Jung H J and Yoon S G 2010 Nano Lett. 10 472 [15] Huang C C, Pelatt B D and Conley J F 2010 Nanotechnology 21 195307 [16] Kim D R, Lee C H and Zheng X 2010 Nano Lett. 10 1050 [17] Cao G Y A and Lieber C M 2007 Nat. Nanotechnol. 2 372 [18] Hamaya K, Masubuchi S, Kawamura M, Machida T, Jung M, Shibata K, Hirakawa K, Taniyama T, Ishida S and Arakawa Y 2007 Appl. Phys. Lett. 90 053108 [19] Yan W, Mechau N, Hahn H and Krupke R 2010 Nanotechnology 21 115501 [20] Franceschi S D, Kouwenhoven L, Sch?nenberger C and Wernsdorfer W 2010 Nat. Nanotechnol. 5 703 [21] Katsaros G, Spathis P, Stoffel M, Fournel F, Mongillo M, Bouchiat V, Lefloch F, Rastelli A, Schmidt O G and Franceschi S D 2010 Nat. Nanotechnol. 5 458 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|