Chin. Phys. Lett.  2012, Vol. 29 Issue (9): 097303    DOI: 10.1088/0256-307X/29/9/097303
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Confined Mie Plasmons in Monolayer Hexagonal-Close-Packed Metallic Nanoshells
CHEN Jing1, DONG Wen1,2, WANG Qiu-Gu1, TANG Chao-Jun1, CHEN Zhuo1**, WANG Zhen-Lin1
1Department of Physics and National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093
2School of Physical Science and Technology, Soochow University, Suzhou 215006
Cite this article:   
CHEN Jing, DONG Wen, WANG Qiu-Gu et al  2012 Chin. Phys. Lett. 29 097303
Download: PDF(1052KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Using a double templating method by electroless deposition within a templating organic porous mold, we fabricate a monolayer of hexagonal-close-packed metallic nanoshells, each with a small opening. Light transmission spectra of the metallic nanoshell arrays are measured, which show transmission resonances at specific wavelengths whose positions are observed to be independent of the incident angle as well as light polarizations. More interestingly, the resonance wavelengths of Mie plasmon modes are also independent of the surrounding medium. Further numerical simulations confirm these transmission resonances and reveal that they are attributed to the excitations of highly localized dipolar, quadrupolar and hexapolar Mie plasmon modes, which are highly confined within metallic nanoshells.
Received: 15 June 2012      Published: 01 October 2012
PACS:  73.20.Mf (Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))  
  81.16.-c (Methods of micro- and nanofabrication and processing)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/9/097303       OR      https://cpl.iphy.ac.cn/Y2012/V29/I9/097303
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
CHEN Jing
DONG Wen
WANG Qiu-Gu
TANG Chao-Jun
CHEN Zhuo
WANG Zhen-Lin
[1] Raether H 1988 Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Berlin: Springer-Verlag)
[2] Barnes W L, Dereux A and Ebbesen T W 2003 Nature 424 824
[3] Kelly K L, Coronado E, Zhao L L and Schatz G C 2003 J. Phys. Chem. B 107 668
[4] Coyle S, Netti M C, Baumberg J J, Ghanem M A, Birkin P R, Bartlett P N and Whittaker D M 2001 Phys. Rev. Lett. 87 176801
[5] Noginov M A, Zhu G, Belgrave A M, Bakker R, Shalaev V M, Narimanov E E, Stout S, Herz E, Suteewong T and Wiesner U 2009 Natrue 460 1110
[6] Pan J, Chen Z, Chen J, Zhan P, Tang C J and Wang Z L 2012 Opt. Lett. 37 1181
[7] Anker J N, Hall W P, Lyandres O, Shah N C, Zhao J and Van Duyne R P 2008 Nat. Mater. 7 442
[8] Li Y Y, Pan J, Zhan P, Zhu S N, Ming N B, Wang Z L, Han W D, Jiang X Y and Zi J 2010 Opt. Express 18 3526
[9] Haynes C L and Van Duyne R P 2003 J. Phys. Chem. B 107 7426
[10] Chen L, Liu F X, Zhan P, Pan J and Wang Z L 2011 Chin. Phys. Lett. 28 057801
[11] Mühlschlegel P, Eisler H J, Martin O J F, Hecht B and Pohl D W 2005 Science 308 1607
[12] Juan M L, Righini M and Quidant R 2011 Nat. Photon. 5 349
[13] Halas N J 2005 MRS Bull. 30 362
[14] Lassiter J B, Knight M W, Mirin N A and Halas N J 2009 Nano Lett. 9 4326
[15] Kelf T A, Sugawara Y, Baumberg J J, Abdelsalam M and Bartlett P N 2005 Phys. Rev. Lett. 95 116802
[16] Cole R M, Sugawara Y, Baumberg J J, Mahajan S, Abdelsalam M and Bartlett P N 2006 Phys. Rev. Lett. 97 137401
[17] Cole R M, Baumberg J J, Garcia de Abajo F J, Mahajan S, Abdelsalam M and Bartlett P N 2007 Nano lett. 7 2094
[18] Teperik T V, García de Abajo F J, Borisov A G, Abdelsalam M, Bartlett P N, Sugawara Y and Baumberg J J 2008 Nat. Photon. 2 299
[19] Teperik T V, Popov V V and García de Abajo F J 2004 Phys. Rev. B 69 155402
[20] Penninkhof J J, Sweatlock L A, Moroz A, Atwater H A, van Blaaderen A and Polman A 2008 J. Appl. Phys. 103 123105
[21] Tang C J, Wang Z L, Zhang W Y, Zhu S N, Ming N B, Sun G and Sheng P 2009 Phys. Rev. B 80 165401
[22] Chen Z, Dong H, Pan J, Zhan P, Tang C J and Wang Z L 2010 Appl. Phys. Lett. 96 051904
[23] Dong W, Dong H, Wang Z L, Zhan P, Yu Z Q, Zhao X N, Zhu Y Y and Ming N B 2006 Adv. Mater. 18 755
[24] Chen Z, Zhan P, Wang Z L, Zhang J H, Zhang W Y, Ming N B, Chan C T and Sheng P 2004 Adv. Mater. 16 417
[25] Wang Q G, Tang C J, Chen J, Zhan P and Wang Z L 2011 Opt. Express. 19 23889
[26] Bohren C F and Huffman D R 1983 Absorption and Scattering of Light by Small Particles (New York: Wiley)
[27] Johnson P B and Christy R W 1972 Phys. Rev. B 6 4370
Related articles from Frontiers Journals
[1] Qirui Cui, Jinghua Liang, Yingmei Zhu, Xiong Yao, and Hongxin Yang. Quantum Anomalous Hall Effects Controlled by Chiral Domain Walls[J]. Chin. Phys. Lett., 2023, 40(3): 097303
[2] Xiang Xiong, Zhao-Yuan Zeng, Ruwen Peng, and Mu Wang. Directional Chiral Optical Emission by Electron-Beam-Excited Nano-Antenna[J]. Chin. Phys. Lett., 2023, 40(1): 097303
[3] Lili Zhao, Wenlu Lin, Y. J. Chung, K. W. Baldwin, L. N. Pfeiffer, and Yang Liu. Finite Capacitive Response at the Quantum Hall Plateau[J]. Chin. Phys. Lett., 2022, 39(9): 097303
[4] Yuan-Fang Yu, Ye Zhang, Fan Zhong, Lin Bai, Hui Liu, Jun-Peng Lu, and Zhen-Hua Ni. Highly Sensitive Mid-Infrared Photodetector Enabled by Plasmonic Hot Carriers in the First Atmospheric Window[J]. Chin. Phys. Lett., 2022, 39(5): 097303
[5] Gongzheng Chen, Jin Lan, Tai Min, and Jiang Xiao. Narrow Waveguide Based on Ferroelectric Domain Wall[J]. Chin. Phys. Lett., 2021, 38(8): 097303
[6] Yun-Fei Zou and Li Yu. Lower Exciton Number Strong Light Matter Interaction in Plasmonic Tweezers[J]. Chin. Phys. Lett., 2021, 38(2): 097303
[7] Jiancai Xue , Limin Lin , Zhang-Kai Zhou, and Xue-Hua Wang . Semi-Ellipsoid Nanoarray for Angle-Independent Plasmonic Color Printing[J]. Chin. Phys. Lett., 2020, 37(11): 097303
[8] Ping Jiang, Chao Li, Yuan-Yuan Chen, Gang Song, Yi-Lin Wang, Li Yu. Strong Exciton-Plasmon Coupling and Hybridization of Organic-Inorganic Exciton-Polaritons in Plasmonic Nanocavity[J]. Chin. Phys. Lett., 2019, 36(10): 097303
[9] Binbin Liu, Pujuan Ma, Wenjing Yu, Yadong Xu, Lei Gao. Tunable Bistability in the Goos–H?nchen Effect with Nonlinear Graphene[J]. Chin. Phys. Lett., 2019, 36(6): 097303
[10] Peng Sun, Wei-Wei Yu, Xiao-Hang Pan, Wei Wei, Yan Sun, Ning-Yi Yuan, Jian-Ning Ding, Wen-Chao Zhao, Xin Chen, Ning Dai. Fluorescence Enhancement of Metal-Capped Perovskite CH$_{3}$NH$_{3}$PbI$_{3}$ Thin Films[J]. Chin. Phys. Lett., 2017, 34(9): 097303
[11] A. R. Sadrolhosseini, M. Naseri, M. K. Halimah. Erratum: Polypyrrole Chitosan Cobalt Ferrite Nanoparticles Composite Layer for Measuring the Low Concentration of Fluorene Using Surface Plasmon Resonance [Chin. Phys. Lett. 34(2017)057501][J]. Chin. Phys. Lett., 2017, 34(8): 097303
[12] A. R. Sadrolhosseini, M. Naseri, M. K. Halimah. Polypyrrole Chitosan Cobalt Ferrite Nanoparticles Composite Layer for Measuring the Low Concentration of Fluorene Using Surface Plasmon Resonance[J]. Chin. Phys. Lett., 2017, 34(5): 097303
[13] Xin Sun. Generalized Hellmann–Feynman Theorem and Its Applications[J]. Chin. Phys. Lett., 2016, 33(12): 097303
[14] Chuan-Pu Liu, Xin-Li Zhu, Jia-Sen Zhang, Jun Xu, Yamin Leprince-Wang, Da-Peng Yu. Energy Levels of Coupled Plasmonic Cavities[J]. Chin. Phys. Lett., 2016, 33(08): 097303
[15] Xiao-Kun Zhao, Yuan Yao, Pei-Lin Lang, Hong-Lian Guo, Xi Shen, Yan-Guo Wang, Ri-Cheng Yu. Absorption Range and Energy Shift of Surface Plasmon in Au Monomer and Dimer[J]. Chin. Phys. Lett., 2016, 33(02): 097303
Viewed
Full text


Abstract