Chin. Phys. Lett.  2012, Vol. 29 Issue (9): 097302    DOI: 10.1088/0256-307X/29/9/097302
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
High Quantum Efficiency Back-Illuminated AlGaN-Based Solar-Blind Ultraviolet p–i–n Photodetectors
WANG Guo-Sheng, LU Hai**, XIE Feng, CHEN Dun-Jun, REN Fang-Fang, ZHANG Rong, ZHENG You-Dou
Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials, and School of Electronic Science and Engineering, Nanjing University, Nanjing 210093
Cite this article:   
WANG Guo-Sheng, LU Hai, XIE Feng et al  2012 Chin. Phys. Lett. 29 097302
Download: PDF(619KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract AlGaN-based back-illuminated solar-blind ultraviolet (UV) p–i–n photodetectors (PDs) with high quantum efficiency are fabricated on sapphire substrates. To improve the overall performance of the PD, a series of structural design considerations and growth procedures are implemented in the epitaxy process. A distinct wavelength-selective photo-response peak of the PD is obtained in the solar-blind region. When operating in photovoltaic mode, the PD exhibits a solar-blind/UV rejection ratio of up to 4 orders of magnitude and a peak responsivity of ~113.5 mA/W at 270 nm, which corresponds to an external quantum efficiency of ~52%. Under a reverse bias of ?5 V, the PD shows a low dark current of ~1.8 pA and an enhanced peak quantum efficiency of ~64%. The thermal noise limited detectivity is estimated to be ~3.3×1013 cm?Hz1/2W?1.
Received: 15 June 2012      Published: 01 October 2012
PACS:  73.40.Kp (III-V semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions)  
  85.60.Gz (Photodetectors (including infrared and CCD detectors))  
  81.05.Ea (III-V semiconductors)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/9/097302       OR      https://cpl.iphy.ac.cn/Y2012/V29/I9/097302
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WANG Guo-Sheng
LU Hai
XIE Feng
CHEN Dun-Jun
REN Fang-Fang
ZHANG Rong
ZHENG You-Dou
[1] Razeghi M 2002 Proc. IEEE 90 1006
[2] Walker D, Zhang X, Kung P, Saxler A, Javadpour S, Xu J and Razeghi M 1996 Appl. Phys. Lett. 68 2100
[3] Averine S V, Kuznetzov P I, Zhitov V A and Alkeev N V 2008 Solid-State Electron. 52 618
[4] Jiang H and Egawa T 2007 Appl. Phys. Lett. 90 121121
[5] Sang L W, Qin Z X, Cen L B, Shen B, Zhang G Y, Li S P, Chen H Y, Liu D Y, Kang J Y, Cheng C J, Zhao H Y, Lu Z X, Ding J X, Zhao L, Si J J and Sun W G 2008 Chin. Phys. Lett. 25 258
[6] Lambert D J H, Wong M M, Chowdhury U, Collins C, Li T, Kwon H K, Shelton B S, Zhu T G, Campbell J C and Dupuisa R D 2000 Appl. Phys. Lett. 77 1900
[7] Tut T, Yelboga T, Ulker E and Ozbay E 2008 Appl. Phys. Lett. 92 103502
[8] Wang H M, Zhang J P, Chen C Q, Fareed Q, Yang J W and Khan M A 2002 Appl. Phys. Lett. 81 604
[9] Yang Y and Cao X A 2009 J. Vac. Sci. Technol. B 27 2337
[10] Fedison J B, Chow T P, Lu H and Bhat I B 1998 Appl. Phys. Lett. 72 2841
[11] Shah J M, Li Y L, Gessmann T and Schubert E F 2003 J. Appl. Phys. 94 2627
[12] Kuksenkov D V, Temkin H, Osinsky A, Gaska R and Khan M A 1998 J. Appl. Phys. 83 2142
[13] Polyakov A Y, Smirnov N B, Govorkov A V and Redwing J M 1998 Solid-State Electron. 42 831
[14] Yan D W, Lu H, Chen D J, Zhang R and Zheng Y D 2010 Appl. Phys. Lett. 96 083504
[15] Morko? H, Carlo A D and Cingolani R 2002 Solid-State Electron. 46 157
[16] Collins C J, Li T, Lambert D J H, Wong M M, Dupuis R D and Campell J C 2000 Appl. Phys. Lett. 77 2810
Related articles from Frontiers Journals
[1] Yu Zhao, Yan Teng, Jing-Jun Miao, Qi-Hua Wu, Jing-Jing Gao, Xin Li, Xiu-Jun Hao, Ying-Chun Zhao, Xu Dong, Min Xiong, Yong Huang. Mid-Infrared InAs/GaSb Superlattice Planar Photodiodes Fabricated by Metal–Organic Chemical Vapor Deposition[J]. Chin. Phys. Lett., 2020, 37(6): 097302
[2] Yu Zhao, Yan Teng, Jing-Jun Miao, Qi-Hua Wu, Jing-Jing Gao, Xin Li, Xiu-Jun Hao, Ying-Chun Zhao, Xu Dong, Min Xiong, Yong Huang. Mid-Infrared InAs/GaSb Superlattice Planar Photodiodes Fabricated by Metal–Organic Chemical Vapor Deposition *[J]. Chin. Phys. Lett., 0, (): 097302
[3] SiQin-GaoWa Bao, Jie-Jie Zhu, Xiao-Hua Ma, Bin Hou, Ling Yang, Li-Xiang Chen, Qing Zhu, Yue Hao. Effects of Low-Damage Plasma Treatment on the Channel 2DEG and Device Characteristics of AlGaN/GaN HEMTs[J]. Chin. Phys. Lett., 2020, 37(2): 097302
[4] Zhi-Yu Lin, Zhi-Bin Chen, Jin-Cheng Zhang, Sheng-Rui Xu, Teng Jiang, Jun Luo, Li-Xin Guo, Yue Hao. Polar Dependence of Threading Dislocation Density in GaN Films Grown by Metal-Organic Chemical Vapor Deposition[J]. Chin. Phys. Lett., 2018, 35(2): 097302
[5] Han-Han Lu, Jing-Ping Xu, Lu Liu. Interfacial and Electrical Properties of GaAs Metal-Oxide-Semiconductor Capacitor with ZrAlON as the Interfacial Passivation Layer[J]. Chin. Phys. Lett., 2017, 34(4): 097302
[6] Xue-Feng Zheng, Ao-Chen Wang, Xiao-Hui Hou, Ying-Zhe Wang, Hao-Yu Wen, Chong Wang, Yang Lu, Wei Mao, Xiao-Hua Ma, Yue Hao. Influence of the Diamond Layer on the Electrical Characteristics of AlGaN/GaN High-Electron-Mobility Transistors[J]. Chin. Phys. Lett., 2017, 34(2): 097302
[7] Lai Wang, Xiao Meng, Jung-Hoon Song, Tae-Soo Kim, Seung-Young Lim, Zhi-Biao Hao, Yi Luo, Chang-Zheng Sun, Yan-Jun Han, Bing Xiong, Jian Wang, Hong-Tao Li. A Method to Obtain Auger Recombination Coefficient in an InGaN-Based Blue Light-Emitting Diode[J]. Chin. Phys. Lett., 2017, 34(1): 097302
[8] Jun Luo, Sheng-Lei Zhao, Zhi-Yu Lin, Jin-Cheng Zhang, Xiao-Hua Ma, Yue Hao. Enhancement of Breakdown Voltage in AlGaN/GaN High Electron Mobility Transistors Using Double Buried p-Type Layers[J]. Chin. Phys. Lett., 2016, 33(06): 097302
[9] LV Qian-Qian, YE Han, YIN Dong-Dong, YANG Xiao-Hong, HAN Qin. An Array Consisting of 10 High-Speed Side-Illuminated Evanescently Coupled Waveguide Photodetectors Each with a Bandwidth of 20 GHz[J]. Chin. Phys. Lett., 2015, 32(12): 097302
[10] GUO Hong-Yu, LV Yuan-Jie, GU Guo-Dong, DUN Shao-Bo, FANG Yu-Long, ZHANG Zhi-Rong, TAN Xin, SONG Xu-Bo, ZHOU Xing-Ye, FENG Zhi-Hong. High-Frequency AlGaN/GaN High-Electron-Mobility Transistors with Regrown Ohmic Contacts by Metal-Organic Chemical Vapor Deposition[J]. Chin. Phys. Lett., 2015, 32(11): 097302
[11] TANG Xiao-Yu, LU Ji-Wu, ZHANG Rui, WU Wang-Ran, LIU Chang, SHI Yi, HUANG Zi-Qian, KONG Yue-Chan, ZHAO Yi. Positive Bias Temperature Instability and Hot Carrier Injection of Back Gate Ultra-thin-body In0.53Ga0.47As-on-Insulator n-Channel Metal-Oxide-Semiconductor Field-Effect Transistor[J]. Chin. Phys. Lett., 2015, 32(11): 097302
[12] FENG Zhi-Hong, WANG Xian-Bin, WANG Li, LV Yuan-Jie, FANG Yu-Long, DUN Shao-Bo, ZHAO Zheng-Ping. Ti/Al Based Ohmic Contact to As-Grown N-Polar GaN[J]. Chin. Phys. Lett., 2015, 32(08): 097302
[13] LIU Shi-Ming, XIAO Hong-Ling, WANG Quan, YAN Jun-Da, ZHAN Xiang-Mi, GONG Jia-Min, WANG Xiao-Liang, WANG Zhan-Guo. InxGa1?xN/GaN Multiple Quantum Well Solar Cells with Conversion Efficiency of 3.77%[J]. Chin. Phys. Lett., 2015, 32(08): 097302
[14] NIU Bin, WANG Yuan, CHENG Wei, XIE Zi-Li, LU Hai-Yan, CHANG Long, XIE Jun-Ling. Common Base Four-Finger InGaAs/InP Double Heterojunction Bipolar Transistor with Maximum Oscillation Frequency 535 GHz[J]. Chin. Phys. Lett., 2015, 32(07): 097302
[15] WANG Xiao-Feng, SHAO Zhen-Guang, CHEN Dun-Jun, LU Hai, ZHANG Rong, ZHENG You-Dou. Forward Current Transport Mechanisms of Ni/Au–InAlN/AlN/GaN Schottky Diodes[J]. Chin. Phys. Lett., 2014, 31(05): 097302
Viewed
Full text


Abstract