CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
High Quantum Efficiency Back-Illuminated AlGaN-Based Solar-Blind Ultraviolet p–i–n Photodetectors |
WANG Guo-Sheng, LU Hai**, XIE Feng, CHEN Dun-Jun, REN Fang-Fang, ZHANG Rong, ZHENG You-Dou |
Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials, and School of Electronic Science and Engineering, Nanjing University, Nanjing 210093 |
|
Cite this article: |
WANG Guo-Sheng, LU Hai, XIE Feng et al 2012 Chin. Phys. Lett. 29 097302 |
|
|
Abstract AlGaN-based back-illuminated solar-blind ultraviolet (UV) p–i–n photodetectors (PDs) with high quantum efficiency are fabricated on sapphire substrates. To improve the overall performance of the PD, a series of structural design considerations and growth procedures are implemented in the epitaxy process. A distinct wavelength-selective photo-response peak of the PD is obtained in the solar-blind region. When operating in photovoltaic mode, the PD exhibits a solar-blind/UV rejection ratio of up to 4 orders of magnitude and a peak responsivity of ~113.5 mA/W at 270 nm, which corresponds to an external quantum efficiency of ~52%. Under a reverse bias of ?5 V, the PD shows a low dark current of ~1.8 pA and an enhanced peak quantum efficiency of ~64%. The thermal noise limited detectivity is estimated to be ~3.3×1013 cm?Hz1/2W?1.
|
|
Received: 15 June 2012
Published: 01 October 2012
|
|
PACS: |
73.40.Kp
|
(III-V semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions)
|
|
85.60.Gz
|
(Photodetectors (including infrared and CCD detectors))
|
|
81.05.Ea
|
(III-V semiconductors)
|
|
|
|
|
[1] Razeghi M 2002 Proc. IEEE 90 1006 [2] Walker D, Zhang X, Kung P, Saxler A, Javadpour S, Xu J and Razeghi M 1996 Appl. Phys. Lett. 68 2100 [3] Averine S V, Kuznetzov P I, Zhitov V A and Alkeev N V 2008 Solid-State Electron. 52 618 [4] Jiang H and Egawa T 2007 Appl. Phys. Lett. 90 121121 [5] Sang L W, Qin Z X, Cen L B, Shen B, Zhang G Y, Li S P, Chen H Y, Liu D Y, Kang J Y, Cheng C J, Zhao H Y, Lu Z X, Ding J X, Zhao L, Si J J and Sun W G 2008 Chin. Phys. Lett. 25 258 [6] Lambert D J H, Wong M M, Chowdhury U, Collins C, Li T, Kwon H K, Shelton B S, Zhu T G, Campbell J C and Dupuisa R D 2000 Appl. Phys. Lett. 77 1900 [7] Tut T, Yelboga T, Ulker E and Ozbay E 2008 Appl. Phys. Lett. 92 103502 [8] Wang H M, Zhang J P, Chen C Q, Fareed Q, Yang J W and Khan M A 2002 Appl. Phys. Lett. 81 604 [9] Yang Y and Cao X A 2009 J. Vac. Sci. Technol. B 27 2337 [10] Fedison J B, Chow T P, Lu H and Bhat I B 1998 Appl. Phys. Lett. 72 2841 [11] Shah J M, Li Y L, Gessmann T and Schubert E F 2003 J. Appl. Phys. 94 2627 [12] Kuksenkov D V, Temkin H, Osinsky A, Gaska R and Khan M A 1998 J. Appl. Phys. 83 2142 [13] Polyakov A Y, Smirnov N B, Govorkov A V and Redwing J M 1998 Solid-State Electron. 42 831 [14] Yan D W, Lu H, Chen D J, Zhang R and Zheng Y D 2010 Appl. Phys. Lett. 96 083504 [15] Morko? H, Carlo A D and Cingolani R 2002 Solid-State Electron. 46 157 [16] Collins C J, Li T, Lambert D J H, Wong M M, Dupuis R D and Campell J C 2000 Appl. Phys. Lett. 77 2810 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|