CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Suppression of the Drift Field in the p-Type Quasineutral Region of a Semiconductor p–n Junction |
CAI Xue-Yuan, YANG Jian-Hong**, WEI Ying |
Institute of Microelectronics, School of Physical Science and Technology, Lanzhou University, Lanzhou 730000 |
|
Cite this article: |
CAI Xue-Yuan, YANG Jian-Hong, WEI Ying 2012 Chin. Phys. Lett. 29 097202 |
|
|
Abstract An improved analytical model of the drift field suppressed by the Dember field due to ambipolar diffusion in the p-type quasineutral region (p-QNR) of a forward silicon p–n junction at low injection levels is presented with a good fit to the numerical simulation results. Considering ambipolar transport of both carriers, the diode current in the p-QNR is found to consist of a minority-electron diffusion-current component and majority-hole drift- and diffusion-current components, and the Dember field plays a dominant role in balancing all the components mentioned above to keep the current constant. The analytical model is beneficial to completely understand ambipolar current transport mechanisms in semiconductor p–n junction devices.
|
|
Received: 20 January 2012
Published: 01 October 2012
|
|
PACS: |
72.20.-i
|
(Conductivity phenomena in semiconductors and insulators)
|
|
72.20.Fr
|
(Low-field transport and mobility; piezoresistance)
|
|
85.30.Kk
|
(Junction diodes)
|
|
|
|
|
[1] Dember H 1931 Phys. Z. 32 554 [2] Klatt G, Hilser F, Qiao W, Beck M, Gebs R, Bartels A, Huska K, Lemmer U, Bastian G, Johnston M B, Fischer M, Faist J and Dekorsy T 2010 Opt. Express 18 4939 [3] Liu K, Xu J Z, Yuan T and Zhang X C 2006 Phys. Rev. B 73 155330 [4] Johnston M B, Dowd A, Driver R, Linfield E H, Davies A G and Whittaker D M 2004 Semicond. Sci. Technol. 19 S449 [5] Dai H M and Liu J S 2011 Chin. Phys. Lett. 28 104201 [6] Efros A L 2010 Phys. Rev. Lett. 104 116404 [7] van Roosbroeck W 1950 Bell Syst. Tech. J. 29 560 van Roosbroeck W 1953 Phys. Rev. 91 282 [8] Manifacier J C and Henisch H K 1978 Phys. Rev. B 17 2640 [9] Ishaque A N, Howard J W, Becker M and Block R C 1991 J. Appl. Phys. 69 307 [10] Cai X Y, Yang J H and Wei Y 2012 Mod. Phys. Lett. B 26 1250103 [11] Champlain J G 2011 Appl. Phys. Lett. 99 123502 [12] Haggag A and Hess K 2000 IEEE Trans. Electron Devices 47 1624 [13] Streetman B G and Banerjee S 2000 Solid State Electron. Devices 5th edn (New Jersey: Prentice-Hall) sec 4.4.2 [14] Taur Y and Ning T H 2009 Fundamentals Mod. VLSI Devices 2nd edn (New York: Cambridge University Press) p 54 [15] Pulfrey D L 2010 Understanding Modern Transistors and Diodes (New York: Cambridge University Press) p 105 [16] Sze S M and Ng K K 2007 Phys. Semiconductor Devices 3rd edn (New Jersey: Wiley-Interscience) p 62 [17] Shockley W and Read W T 1952 Phys. Rev. 87 835 Hall R N 1952 Phys. Rev. 87 387 [18] Reggiani S, Valdinoci M, Colalongo L, Rudan M, Baccarani G, Stricker A D, Illien F, Felber N, Fichtner W and Zullino L 2002 IEEE Trans. Electron Devices 49 490 [19] del Alamo J, Swirhun S and Swanson R M 1985 Solid-State Electron. 28 47 [20] Sah C T, Noyce R N and Shockley W 1957 Proc. IRE 45 1228 [21] Warner R M and Grung B L 1991 Semiconductor-Device Electronics (Cary, NC, USA: Oxford University Press) p 278 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|