Chin. Phys. Lett.  2012, Vol. 29 Issue (9): 097201    DOI: 10.1088/0256-307X/29/9/097201
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Experimental Research on Carrier Redistribution in InAs/GaAs Quantum Dots
LI Chuan-Feng1**, CHEN Geng1, GONG Ming1, LI Hai-Qiao2, NIU Zhi-Chuan2
1Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026
2State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083
Cite this article:   
LI Chuan-Feng, CHEN Geng, GONG Ming et al  2012 Chin. Phys. Lett. 29 097201
Download: PDF(760KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract In order to investigate the carrier redistribution mechanisms in InAs/GaAs self-assembled quantum dots, the photoluminescent energy peak shift is studied with increasing excitation power. Unusually for samples of relatively low density, it is shown that the energy peak position could recover slowly after a fast redshift, associated with the increasing excitation power. A theoretical model is presented, which involves the Auger effect assisting carrier recapture as important mechanisms during the relaxation process.
Received: 15 May 2012      Published: 01 October 2012
PACS:  72.10.-d (Theory of electronic transport; scattering mechanisms)  
  73.21.La (Quantum dots)  
  78.67.Hc (Quantum dots)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/9/097201       OR      https://cpl.iphy.ac.cn/Y2012/V29/I9/097201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LI Chuan-Feng
CHEN Geng
GONG Ming
LI Hai-Qiao
NIU Zhi-Chuan
[1] Arakawa Y and Asakaki H 1982 Appl. Phys. Lett. 40 939
[2] Leonard D, Krishnamurthy M C, Reaves M, Denbaars S P and Petroff P M 1993 Appl. Phys. Lett. 63 3203
[3] Cusack M A, Briddon P R and Jaros M 1996 Phys. Rev. B 54 R2300
[4] Sugawara M, Mukai K and Nakata Y 1999 Appl. Phys. Lett. 74 1561
[5] Zhou W D, Qasaimeh O, Phillips J, Krishna S and Bhattacharya P 1999 Appl. Phys. Lett. 74 783
[6] Imamura K, Sugiyama Y, Nakata Y, Muto S and Yokoyama N 1995 Jpn. J. Appl. Phys. II 34 L1445
[7] Grundmann M, Ledentsov N N, Stier O, Bimberg D, Ustinov V M, Kopev P S and Alferov Z I 1996 Appl. Phys. Lett. 68 979
[8] Valenta J, Juhasz R and Linnros J 2002 Appl. Phys. Lett. 80 1070
[9] Zhang Y C, Huang C J, Liu F Q, Xu B, Wu J, Chen Y H, Ding D, Jiang W H, Ye X L and Wang Z G 2001 J. Appl. Phys. 90 1973
[10] Mazur Yu I, Wang Zh M, Tarasov G G, Xiao M, Salamo G J, Tomm J W, Talalaev V and Kissel H 2005 Appl. Phys. Lett. 86 063102
[11] Tarasov G G, Mazur Yu I, Zhuchenko Z Ya, Maabdorf A, Nickel D, Tomm J W, Kissel H, Walther C and Masselink W T 2000 J. Appl. Phys. 88 7162
[12] Nilsson H H, Zhang J Z and Galbraith I 2005 Phys. Rev. B 72 205331
[13] Uskov A V, McInerney J, Adler F, Schweizer H and Pilkuhn M H 1998 Appl. Phys. Lett. 72 58
[14] Uskov A V, Adler F, Schweizer H and Pilkuhn M H 1997 J. Appl. Phys. 81 7895
[15] Bockelmann U and Egeler T 1992 Phys. Rev. B 46 15574
[16] Pan J L 1994 Phys. Rev. B 49 2536
[17] Pan J L and Hagelstein P L 1994 Phys. Rev. B 49 2554
[18] Lee H, Lowe-Webb R, Johnson T J, Yang W D and Sercel P C 1998 Appl. Phys. Lett. 73 3556
[19] Grundmann M and Bimberg D 1997 Phys. Rev. B 55 9470
[20] Morris D, Perret N and Fafard S 1999 Appl. Phys. Lett. 75 3593
[21] Borri P, Langbein W, Hvam J M, Heinrichsdorff F, Mao M H and D Bimberg 2000 Appl. Phys. Lett. 76 1380
[22] Borri P, Schneider S, Langbein W, Woggon U, Zhukov A E, Ustinov V M, Ledentsov N N, Alferov Z I, Ouyang D and D Bimberg 2001 Appl. Phys. Lett. 79 2633
[23] Borri P, Langbein W, Schneider S, Woggon U, Sellin R L, Ouyang D and D Bimberg 2002 IEEE J. Sel. Top. Quantum Electron. 8 984
[24] Xu Z C, Leosson K, Birkedal D, Lyssenko V, Hvam J M and Sadowski J 2003 Nanotechnology 14 1259
[25] Saidi F, Hamila R, Maaref H, Rodriguez Ph, Auvray L and Monteil Y 2010 J. Alloys Compd. 491 45
[26] Varshni Y P 1967 Physica 34 149
[27] Bichler S, Ester P, Zrenner A and Bichler M 2004 Appl. Phys. Lett. 85 4202
[28] Beham E, Zrenner A, Findeis F, Bichler M and Abstreiter G 2001 Appl. Phys. Lett 79 2808
[29] Chen G, Tang J S, Li C F, Gong M, Chen L and Guo G C 2009 Physica E 42 196
Related articles from Frontiers Journals
[1] Yawen Guo, Wenqi Jiang, Xinru Wang, Fei Wan, Guanqing Wang, G. H. Zhou, Z. B. Siu, Mansoor B. A. Jalil, and Yuan Li. Effect of Geometrical Structure on Transport Properties of Silicene Nanoconstrictions[J]. Chin. Phys. Lett., 2021, 38(12): 097201
[2] Rui-Chun Xiao, Zibo Wang, Zhi-Qiang Zhang, Junwei Liu, and Hua Jiang. Magnus Hall Effect in Two-Dimensional Materials[J]. Chin. Phys. Lett., 2021, 38(5): 097201
[3] Zhen Ning, Bo Fu, Qinwei Shi, and Xiaoping Wang. Universal Minimum Conductivity in Disordered Double-Weyl Semimetal[J]. Chin. Phys. Lett., 2020, 37(11): 097201
[4] Xiao Wang, Guo-Dong Wei. Quantum Scars in Microwave Dielectric Photonic Graphene Billiards[J]. Chin. Phys. Lett., 2020, 37(1): 097201
[5] Gufeng Fu, Fang Cheng. Anisotropic Transport on Monolayer and Multilayer Phosphorene in the Presence of an Electric Field[J]. Chin. Phys. Lett., 2019, 36(5): 097201
[6] Yi-Heng Yin, Yan-Xiong Niu, Ming Ding, Hai-Yue Liu, Zhen-Jiang Liang. Transport and Conductance in Fibonacci Graphene Superlattices with Electric and Magnetic Potentials[J]. Chin. Phys. Lett., 2016, 33(05): 097201
[7] LIU Mi, ZHU Rui. Shot Noise of the Conductance through a Superconducting Barrier in Graphene[J]. Chin. Phys. Lett., 2015, 32(12): 097201
[8] ZHOU Shu-Xing, QI Ming, AI Li-Kun, XU An-Huai, WANG Li-Dan, DING Peng, JIN Zhi. Effects of Si δ-Doping Condition and Growth Interruption on Electrical Properties of InP-Based High Electron Mobility Transistor Structures[J]. Chin. Phys. Lett., 2015, 32(09): 097201
[9] TAN Xun-Qiong. Electronic Transport of the Adsorbed Trigonal Graphene Flake: A First Principles Calculation[J]. Chin. Phys. Lett., 2014, 31(12): 097201
[10] CHEN Bao-Jun, TANG Zhen-An, JU Yan-Jie. A Numerical Method for Modeling the Effects of Irregular Shape on Interconnect Resistance[J]. Chin. Phys. Lett., 2014, 31(05): 097201
[11] LI Ming-Jun, LONG Meng-Qiu, XU Hui. Effects of the Bridging Bond on Electronic Transport in a D-B-A Device[J]. Chin. Phys. Lett., 2013, 30(8): 097201
[12] WANG Ting-Dong, HUAI Ping. Quantum Confinement Effects in Dynamically Screened Quasi-One-Dimensional Systems[J]. Chin. Phys. Lett., 2013, 30(6): 097201
[13] ZHANG Yi-Jun, ZHAO Jing, ZOU Ji-Jun, NIU Jun, CHEN Xin-Long, CHANG Ben-Kang. The High Quantum Efficiency of Exponential-Doping AlGaAs/GaAs Photocathodes Grown by Metalorganic Chemical Vapor Deposition[J]. Chin. Phys. Lett., 2013, 30(4): 097201
[14] Clóves G. Rodrigues. Onset for the Electron Velocity Overshoot in Indium Nitride[J]. Chin. Phys. Lett., 2012, 29(12): 097201
[15] M. R. Setare, *, D. Jahani, ** . Quantum Hall Effect and Different Zero-Energy Modes of Graphene[J]. Chin. Phys. Lett., 2011, 28(9): 097201
Viewed
Full text


Abstract