CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Experimental Research on Carrier Redistribution in InAs/GaAs Quantum Dots |
LI Chuan-Feng1**, CHEN Geng1, GONG Ming1, LI Hai-Qiao2, NIU Zhi-Chuan2 |
1Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026 2State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083 |
|
Cite this article: |
LI Chuan-Feng, CHEN Geng, GONG Ming et al 2012 Chin. Phys. Lett. 29 097201 |
|
|
Abstract In order to investigate the carrier redistribution mechanisms in InAs/GaAs self-assembled quantum dots, the photoluminescent energy peak shift is studied with increasing excitation power. Unusually for samples of relatively low density, it is shown that the energy peak position could recover slowly after a fast redshift, associated with the increasing excitation power. A theoretical model is presented, which involves the Auger effect assisting carrier recapture as important mechanisms during the relaxation process.
|
|
Received: 15 May 2012
Published: 01 October 2012
|
|
|
|
|
|
[1] Arakawa Y and Asakaki H 1982 Appl. Phys. Lett. 40 939 [2] Leonard D, Krishnamurthy M C, Reaves M, Denbaars S P and Petroff P M 1993 Appl. Phys. Lett. 63 3203 [3] Cusack M A, Briddon P R and Jaros M 1996 Phys. Rev. B 54 R2300 [4] Sugawara M, Mukai K and Nakata Y 1999 Appl. Phys. Lett. 74 1561 [5] Zhou W D, Qasaimeh O, Phillips J, Krishna S and Bhattacharya P 1999 Appl. Phys. Lett. 74 783 [6] Imamura K, Sugiyama Y, Nakata Y, Muto S and Yokoyama N 1995 Jpn. J. Appl. Phys. II 34 L1445 [7] Grundmann M, Ledentsov N N, Stier O, Bimberg D, Ustinov V M, Kopev P S and Alferov Z I 1996 Appl. Phys. Lett. 68 979 [8] Valenta J, Juhasz R and Linnros J 2002 Appl. Phys. Lett. 80 1070 [9] Zhang Y C, Huang C J, Liu F Q, Xu B, Wu J, Chen Y H, Ding D, Jiang W H, Ye X L and Wang Z G 2001 J. Appl. Phys. 90 1973 [10] Mazur Yu I, Wang Zh M, Tarasov G G, Xiao M, Salamo G J, Tomm J W, Talalaev V and Kissel H 2005 Appl. Phys. Lett. 86 063102 [11] Tarasov G G, Mazur Yu I, Zhuchenko Z Ya, Maabdorf A, Nickel D, Tomm J W, Kissel H, Walther C and Masselink W T 2000 J. Appl. Phys. 88 7162 [12] Nilsson H H, Zhang J Z and Galbraith I 2005 Phys. Rev. B 72 205331 [13] Uskov A V, McInerney J, Adler F, Schweizer H and Pilkuhn M H 1998 Appl. Phys. Lett. 72 58 [14] Uskov A V, Adler F, Schweizer H and Pilkuhn M H 1997 J. Appl. Phys. 81 7895 [15] Bockelmann U and Egeler T 1992 Phys. Rev. B 46 15574 [16] Pan J L 1994 Phys. Rev. B 49 2536 [17] Pan J L and Hagelstein P L 1994 Phys. Rev. B 49 2554 [18] Lee H, Lowe-Webb R, Johnson T J, Yang W D and Sercel P C 1998 Appl. Phys. Lett. 73 3556 [19] Grundmann M and Bimberg D 1997 Phys. Rev. B 55 9470 [20] Morris D, Perret N and Fafard S 1999 Appl. Phys. Lett. 75 3593 [21] Borri P, Langbein W, Hvam J M, Heinrichsdorff F, Mao M H and D Bimberg 2000 Appl. Phys. Lett. 76 1380 [22] Borri P, Schneider S, Langbein W, Woggon U, Zhukov A E, Ustinov V M, Ledentsov N N, Alferov Z I, Ouyang D and D Bimberg 2001 Appl. Phys. Lett. 79 2633 [23] Borri P, Langbein W, Schneider S, Woggon U, Sellin R L, Ouyang D and D Bimberg 2002 IEEE J. Sel. Top. Quantum Electron. 8 984 [24] Xu Z C, Leosson K, Birkedal D, Lyssenko V, Hvam J M and Sadowski J 2003 Nanotechnology 14 1259 [25] Saidi F, Hamila R, Maaref H, Rodriguez Ph, Auvray L and Monteil Y 2010 J. Alloys Compd. 491 45 [26] Varshni Y P 1967 Physica 34 149 [27] Bichler S, Ester P, Zrenner A and Bichler M 2004 Appl. Phys. Lett. 85 4202 [28] Beham E, Zrenner A, Findeis F, Bichler M and Abstreiter G 2001 Appl. Phys. Lett 79 2808 [29] Chen G, Tang J S, Li C F, Gong M, Chen L and Guo G C 2009 Physica E 42 196 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|