Chin. Phys. Lett.  2012, Vol. 29 Issue (9): 097102    DOI: 10.1088/0256-307X/29/9/097102
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Optoelectronic Response of GeZn2O4 through the Modified Becke–Johnson Potential
Iftikhar Ahmad1, B. Amin2*, M. Maqbool3, S. Muhammad2, G. Murtaza4, S. Ali5, N. A. Noor5
1Department of Physics, University of Malakand, Pakistan
2Materials Modeling Lab, Department of Physics, Hazara University, 21300, Pakistan
3Department of Physics and Astronomy, Ball State University, Indiana, 47306-0505, USA
4Department of Physics, Islamia College University, Peshawar, Pakistan
5Department of Physics, University of the Punjab, Quaid-e-Azam Campus, 54590, Pakistan
Cite this article:   
Iftikhar Ahmad, B. Amin, M. Maqbool et al  2012 Chin. Phys. Lett. 29 097102
Download: PDF(486KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A first-principles technique capable of describing the nearly excited states of semiconductors and insulators, namely the modified Becke–Johnson (mBJ) potential approximation, is used to investigate the electronic band structure and optical properties of spinel oxides: GeZn2O4. The predicted band gaps using the mBJ approximation are significantly more accurate than the proposed previous theoretical work using the common LDA and GGA. Band gap dependent optical parameters, like the dielectric constant, index of refraction, reflectivity and optical conductivity are calculated and analyzed. The results from the dielectric constant shows that the numerical value of the static dielectric, after dropping constantly, becomes less than zero and the material exhibits metallic behavior. The refractive index also drops below unity for photons higher than 18 eV, which indicates that the velocities of incident photons are greater than the velocity of light. However, these phenomena can be explained by the fact that a signal must be transmitted as a wave packet rather than a monochromatic wave. This comprehensive theoretical study of the optoelectronic properties predicts that these materials can effectively be used in optical devices.
Received: 09 January 2012      Published: 01 October 2012
PACS:  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  78.20.-e (Optical properties of bulk materials and thin films)  
  85.60.-q (Optoelectronic devices)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/9/097102       OR      https://cpl.iphy.ac.cn/Y2012/V29/I9/097102
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Iftikhar Ahmad
B. Amin
M. Maqbool
S. Muhammad
G. Murtaza
S. Ali
N. A. Noor
[1] Hosseini M S 2008 Phys. Stat. Sol. B 245 2800
[2] Nozik J 1972 Phys. Rev. B 6 453
[3] Ueda N, Omata T, Hikuma N, Ueda K, Mizoquchi H, Hashimoto T and Kawazoe H 1992 Appl. Phys. Lett. 61 1954
[4] Kawazoe H and Ueda K 1999 J. Am. Ceram. Soc. 82 3330
[5] Bouhemadou A 2008 Modelling Simul. Mater. Sci. Eng. 16 055007
[6] Koller D, Tran F and Blaha P 2011 Phys. Rev. B 83 195134
[7] Engel E 2009 Phys. Rev. B 80 161205
[8] Tran F and Blaha P 2009 Phys. Rev. Lett. 102 226401
[9] Becke D A and Johnson R E 2006 J. Chem. Phys. 124 221101
[10] Tran F, Blaha P and Schwarz K 2007 J. Phys. Condens. Matter. 19 196208
[11] Blaha P, Schwarz K, Madsen G, Kvasnicka D and Luitz J (Institute of Material Chemistry, TU Vienna) http://www.wien2k.at/
[12] Kohn W and Sham S L 1965 Phys. Rev. 140 A1133
[13] Andersen K O 1975 Phys. Rev. B 12 3060
[14] Amin B, Iftikhar A, Maqbool M, Goumri-Said S and Ahmad R 2011 J. Appl. Phys. 109 023109
[15] Amin B, Khenata R, Bouhemadou A, Iftikhar Ahmad and Maqbool M 2012 Physica B 407 2588
[16] Scanlon O D and Watson W G 2011 Phys. Chem. Chem. Phys. 13 9667
[17] Maqbool M, Amin B and Iftikhar A 2009 J. Opt. Soc. Am. B 26 2181
[18] Amin B, Ahmad I and Maqbool M 2010 J. Lightwave Technol. 28 223
[19] Koizumi A, Moriya H, Watanabe N, Nonogaki Y, Fujiwara Y and Takeda Y 2002 Appl. Phys. Lett. 80 1559
[20] Hirayama H, Kinoshita A, Hirata A and Aoyagi Y 2002 Appl. Phys. Lett. 80 1589
[21] Wooten F 1972 Optical Properties of Solids (New York: Academic Press)
[22] Fox M 2001 Optical Properties of Solids (Oxford: Oxford University Press)
[23] Dekkers M, Rijnders G and Blank A H D 2007 Appl. Phys. Lett. 90 021903
[24] Penn D 1962 Phys. Rev. 128 2093
Related articles from Frontiers Journals
[1] Weiqing Zhou and Shengjun Yuan. A Time-Dependent Random State Approach for Large-Scale Density Functional Calculations[J]. Chin. Phys. Lett., 2023, 40(2): 097102
[2] Wanfei Shan, Jiangtao Du, and Weidong Luo. Magnetic Interactions and Band Gaps of the (CrO$_2$)$_2$/(MgH$_2$)$_n$ Superlattices[J]. Chin. Phys. Lett., 2022, 39(11): 097102
[3] Chuli Sun, Wei Guo, and Yugui Yao. Predicted Pressure-Induced High-Energy-Density Iron Pentazolate Salts[J]. Chin. Phys. Lett., 2022, 39(8): 097102
[4] Ying Zhou, Long Chen, Gang Wang, Yu-Xin Wang, Zhi-Chuan Wang, Cong-Cong Chai, Zhong-Nan Guo, Jiang-Ping Hu, and Xiao-Long Chen. A New Superconductor Parent Compound NaMn$_{6}$Bi$_{5}$ with Quasi-One-Dimensional Structure and Lower Antiferromagnetic-Like Transition Temperatures[J]. Chin. Phys. Lett., 2022, 39(4): 097102
[5] Xiaolan Yan, Pei Li, Su-Huai Wei, and Bing Huang. Universal Theory and Basic Rules of Strain-Dependent Doping Behaviors in Semiconductors[J]. Chin. Phys. Lett., 2021, 38(8): 097102
[6] Z. Z. Zhou, H. J. Liu, G. Y. Wang, R. Wang, and X. Y. Zhou. Dual Topological Features of Weyl Semimetallic Phases in Tetradymite BiSbTe$_{3}$[J]. Chin. Phys. Lett., 2021, 38(7): 097102
[7] Xian-Li Zhang, Jinbo Pan, Xin Jin, Yan-Fang Zhang, Jia-Tao Sun, Yu-Yang Zhang, and Shixuan Du. Database Construction for Two-Dimensional Material-Substrate Interfaces[J]. Chin. Phys. Lett., 2021, 38(6): 097102
[8] Xiu Yan, Wei-Li Zhen, Hui-Jie Hu, Li Pi, Chang-Jin Zhang, and Wen-Ka Zhu. High-Performance Visible Light Photodetector Based on BiSeI Single Crystal[J]. Chin. Phys. Lett., 2021, 38(6): 097102
[9] Hong-Bin Ren, Lei Wang, and Xi Dai. Machine Learning Kinetic Energy Functional for a One-Dimensional Periodic System[J]. Chin. Phys. Lett., 2021, 38(5): 097102
[10] Jiayu Ma, Junlin Kuang, Wenwen Cui, Ju Chen, Kun Gao, Jian Hao, Jingming Shi, and Yinwei Li. Metal-Element-Incorporation Induced Superconducting Hydrogen Clathrate Structure at High Pressure[J]. Chin. Phys. Lett., 2021, 38(2): 097102
[11] Xingyong Huang, Liujiang Zhou, Luo Yan, You Wang, Wei Zhang, Xiumin Xie, Qiang Xu, and Hai-Zhi Song. HfX$_{2}$ (X = Cl, Br, I) Monolayer and Type II Heterostructures with Promising Photovoltaic Characteristics[J]. Chin. Phys. Lett., 2020, 37(12): 097102
[12] Xihui Wang, Xiaole Qiu, Chang Sun, Xinyu Cao, Yujie Yuan, Kai Liu, and Xiao Zhang. Layered Transition Metal Electride Hf$_{2}$Se with Coexisting Two-Dimensional Anionic $d$-Electrons and Hf–Hf Metallic Bonds[J]. Chin. Phys. Lett., 2021, 38(1): 097102
[13] Aolin Li, Wenzhe Zhou, Jiangling Pan, Qinglin Xia, Mengqiu Long, and Fangping Ouyang. Coupling Stacking Orders with Interlayer Magnetism in Bilayer H-VSe$_{2}$[J]. Chin. Phys. Lett., 2020, 37(10): 097102
[14] Kaiyao Zhou, Jun Deng, Liwei Guo, and Jiangang Guo. Tunable Superconductivity in 2H-NbSe$_{2}$ via $\boldsymbol In~Situ$ Li Intercalation[J]. Chin. Phys. Lett., 2020, 37(9): 097102
[15] Xu-Han Shi, Bo Liu, Zhen Yao, Bing-Bing Liu. Pressure-Stabilized New Phase of CaN$_{4}$[J]. Chin. Phys. Lett., 2020, 37(4): 097102
Viewed
Full text


Abstract