CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
|
|
|
|
Effect of Minor Co Substitution for Ni on the Glass Forming Ability and Magnetic Properties of Gd55Al20Ni25 Bulk Metallic Glass |
WANG Peng1, CHAN Kang-Cheung2, LU Shuang1, TANG Mei-Bo3, XIA Lei1,2** |
1Laboratory for Microstructure, Shanghai University, Shanghai 200072 2Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong 3Key Laboratory of Transparent and Opto-functional Inorganic Materials, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 |
|
Cite this article: |
WANG Peng, CHAN Kang-Cheung, LU Shuang et al 2012 Chin. Phys. Lett. 29 096103 |
|
|
Abstract Element substitution is usually used to improve the glass forming ability (GFA) and magnetic properties of alloys. We obtain Gd55Al20Ni20Co5 bulk metallic glass (BMG) by minor Co substitution for Ni in the Gd55Al20Ni25 glass-forming alloy. The Gd55Al20Ni20Co5 BMG exhibits a better GFA and magnetocaloric effect (MCE) than the Gd55Al20Ni25 BMG. The mechanism for the enhanced magnetic entropy change and refrigeration capacity of the Gd55Al20Ni20Co5 BMG is investigated.
|
|
Received: 27 February 2012
Published: 01 October 2012
|
|
PACS: |
61.43.Dq
|
(Amorphous semiconductors, metals, and alloys)
|
|
81.05.Kf
|
(Glasses (including metallic glasses))
|
|
75.30.Sg
|
(Magnetocaloric effect, magnetic cooling)
|
|
81.20.-n
|
(Methods of materials synthesis and materials processing)
|
|
|
|
|
[1] Luo Q, Zhao D Q, Pan M X and Wang W H 2006 Appl. Phys. Lett. 89 081914[2] Jo C L, Xia L, Ding D and Dong Y D 2006 Chin. Phys. Lett. 23 672[3] Luo Q, Zhao D Q, Pan M X and Wang W H 2008 Appl. Phys. Lett. 92 011923[4] Liang L, Hui X, Wu Y and Chen G L 2008 J. Alloys Compds. 457 541[5] Ding D, Xia L, Yu Z H and Dong Y D 2008 Chin. Phys. Lett. 25 3414[6] Du J, Zheng Q, Li Y B, Zhang Q, Li D and Zhang Z D 2008 J. Appl. Phys. 103 023918[7] Liu Y S, Zhang J C, Wang Y Q, Zhu Y Y, Yang Z L, Chen J and Cao S X 2009 Appl. Phys. Lett. 94 112507[8] Dong Q Y, Shen B G, Chen J, Shen J, Wang F, Zhang H W, Sun J R 2009 J. Appl. Phys. 105 053908[9] Gorsse S, Chevalier B and Orveillon G 2008 Appl. Phys. Lett. 92 122501[10] Lu S, Tang M B and Xia L 2011 Physica B 406 3398[11] Wood M E and Potter W H 1985 Cryogenics 25 667[12] Pecharsky V K and Gschneider Jr K A 1997 Phys. Rev. Lett. 78 4494[13] Glanz J 1998 Science 279 2045[14] Gschneider Jr K A, Pecharsky V K and Tsokol A O 2005 Rep. Prog. Phys. 68 1479[15] de Oliveira N A and von Ranke P J 2010 Phys. Rep. 489 89[16] Inoue A 2000 Acta Mater 48 279[17] Xia L, Jo C L, Ding D and Dong Y D 2005 J. Phys. D: Appl. Phys. 38 4335[18] Xia L, Wei B C, Zhang Z, Pan M X, Wang W H and Dong Y D 2003 J. Phys. D: Appl. Phys. 36 775[19] Wang W H 2007 Prog. Mater. Sci. 52 540[20] Holtzberg F, Gambino R J and McGuire T R1967 J. Phys. Chem. Solids 28 2283[21] Lu Z P and Liu C T 2003 Phys. Rev. Lett. 91 115505-1[22] Liu X Y, Barclay J A, Gopal R B, Foldeaki M, Chahine R, Bose T K, Schurer P J and Lacombe J L 1996 J. Appl. Phys. 79 1630 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|