CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
|
|
|
|
Dislocation Behavior in AlGaN/GaN Multiple Quantum-Well Films Grown with Different Interlayers |
SUN He-Hui1**, GUO Feng-Yun1, LI Deng-Yue1, WANG Lu2, ZHAO De-Gang3, ZHAO Lian-Cheng1 |
1Department of Information Materials Science and Technology, Harbin Institute of Technology, Harbin 150001 2Renewable Energy Laboratory, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 3State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, P.O. Box 912, Beijing 100083 |
|
Cite this article: |
SUN He-Hui, GUO Feng-Yun, LI Deng-Yue et al 2012 Chin. Phys. Lett. 29 096101 |
|
|
Abstract Dislocation behaviors are analyzed in AlGaN/GaN multiple-quantum-well films grown with different strain-modified interlayers. In the case of multiple-quantum-well layers grown on a GaN buffer layer without the interlayer, many threading dislocations interact and annihilate within about 100 nm below the multiple quantum well layer. For multiple-quantum-well layers grown with the AlGaN interlayer, misfit dislocations between the GaN buffer layer and the AlGaN interlayer enter multiple-quantum-well layers and result in an increase of threading dislocation density. Besides misfit dislocations, the edge-type dislocation is another dislocation origin attributed to the dissociation of Shockley partials bounding the stacking fault in AlN/GaN superlattices below the interlayer interface.
|
|
Received: 24 April 2012
Published: 01 October 2012
|
|
PACS: |
61.72.Lk
|
(Linear defects: dislocations, disclinations)
|
|
61.05.cp
|
(X-ray diffraction)
|
|
68.37.-d
|
(Microscopy of surfaces, interfaces, and thin films)
|
|
61.72.uj
|
(III-V and II-VI semiconductors)
|
|
|
|
|
[1] Ng H M, Gmachl C, Siegrist T et al 2001 Phys. Status Solidi A 188 825 [2] Lei S Y, Shen B and Zhang G Y 2008 Chin. Phys. Lett. 25 3385 [3] Cen L B, Shen B, Qin Z X et al 2009 Chin. Phys. B 18 3905 [4] Zhou Q Y, Chen J Y et al 2003 J. Appl. Phys. 93 10140 [5] Terashima W and Hirayama H 2011 Phys. Status Solidi A 208 1187 [6] Vardi A, Bahir G, Guillot F et al 2008 Appl. Phys. Lett. 92 011112 [7] Holmstr?m P 2006 IEEE J. Quantum Electron. 42 810 [8] Albrecht M, Weyher J L, Lucznik B et al 2008 Appl. Phys. Lett. 92 231909 [9] Sang L W, Qin Z X, Fang H et al 2008 Appl. Phys. Lett. 92 192122 [10] Kotsar Y, Doisneau B, Bellet-AmalricE et al 2011 J. Appl. Phys. 110 033501 [11] Dunn C G and Kogh E F 1957 Acta Metallurgica 5 548 [12] Zhang J C, Zhao D G, Wang J F et al 2004 J. Cryst. Growth 268 24 [13] Follstaedt D M, Lee S R, Provencio P P et al 2005 Appl. Phys. Lett. 87 121112 [14] Cantu P, Wu F, Waltereit P et al 2005 J. Appl. Phys. 97 103534 [15] Bykhovski A D, Gelmont B L and Shur M S 1995 J. Appl. Phys. 78 3691 [16] Kioseoglou J, Kalesaki E, Lymperakis L et al 2009 Phys. Status Solidi A 206 1892 [17] Narayanan V, Lorenz K, Kim W and Mahajan S 2001 Appl. Phys. Lett. 78 1544 [18] Meng F Y, Han I, McFelea H et al 2011 Scr. Mater. 64 93 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|