Chin. Phys. Lett.  2012, Vol. 29 Issue (9): 094703    DOI: 10.1088/0256-307X/29/9/094703
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
A New Hybrid Numerical Scheme for Two-Dimensional Ideal MHD Equations
ZHOU Yu-Fen**, FENG Xue-Shang
SIGMA Weather Group, State Key Laboratory for Space Weather, Center for Space Science and Applied Research, Chinese Academy of Sciences, Beijing 100190
Cite this article:   
ZHOU Yu-Fen, FENG Xue-Shang 2012 Chin. Phys. Lett. 29 094703
Download: PDF(624KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We present a new hybrid numerical scheme for two-dimensional (2D) ideal magnetohydrodynamic (MHD) equations. A simple conservation element and solution element (CESE) method is used to calculate the flow variables, and the unknown first-order spatial derivatives involved in the CESE method are computed with a finite volume scheme that uses the solution of the derivative Riemann problem with limited reconstruction to evaluate the numerical flux at cell interface position. To show the validation and capacity of its application to 2D MHD problems, we study several benchmark problems. Numerical results verify that the hybrid scheme not only performs well, but also can retain the solution quality even if the Courant number ranges from close to 1 to less than 0.01.
Received: 23 April 2012      Published: 01 October 2012
PACS:  47.11.-j (Computational methods in fluid dynamics)  
  52.30.Cv (Magnetohydrodynamics (including electron magnetohydrodynamics))  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/9/094703       OR      https://cpl.iphy.ac.cn/Y2012/V29/I9/094703
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHOU Yu-Fen
FENG Xue-Shang
[1] Chang S C 1995 J. Comput. Phys. 119 295
[2] Chang S C, Wang X Y and Chow C Y 1994 NASA TM 106758
[3] Chang S C, Wang X Y and Chow C Y 1999 J. Comput. Phys. 156 89
[4] Wang X Y and Chang S C 1999 Comp. Fluid Dynam. J. 8 309
[5] Zhang Z C, Yu S T and Chang S C 2002 J. Comput. Phys. 175 168
[6] Feng X S, Zhou Y F and Wu S T 2007 Astrophys. J. 655 1110
[7] Ji Z and Zhou Y F 2010 Chin. Phys. Let. 27 85201
[8] Qamar S and Mudasser S 2010 Appl. Numer. Math. 60 587
[9] Zhang M J et al 2006 J. Comput. Phys. 214 599
[10] Toro E F, Millington R C and Nejad L A M 2001 Godunov Methods. Theory andApplications (Kluwer Academic/Plenum Publishers) p 907
[11] Toro E F and Hidalgo A 2009 Appl. Numer. Math. 59 73
[12] Balsara D S, Rumpf T, Dumber M and Munz C D 2009 J. Comput. Phys. 228 2480
[13] Toro E F and Titarev V A 2002 Proc. Roy. Soc. London A 458 271
[14] Powell K G et al 1999 J. Comput. Phys. 154 284
[15] Toth G 2000 J. Comput. Phys. 161 605
[16] Dedner A et al 2002 J. Comput. Phys. 175 645
[17] Chang S C and Wang X Y 2003 AIAA paper 2003-5285
[18] Venkatachari B S, Cheng G C, Soni B K andChang S C 2008 Math. Comput. Simulat. 78 653
[19] Feng X S et al 2010 Astrophys. J. 723 300
Related articles from Frontiers Journals
[1] Tao HU, Meng-Dan HU, Si-si Zhou, Dong-Ke SUN. An Immersed Boundary-Lattice Boltzmann Prediction for Particle Hydrodynamic Focusing in Annular Microchannels[J]. Chin. Phys. Lett., 2018, 35(10): 094703
[2] SUN Dong-Ke, ZHANG Qing-Yu, CAO Wei-Sheng, ZHU Ming-Fang. Simulation of Dendritic Growth with Melt Convection in Solidification of Ternary Alloys[J]. Chin. Phys. Lett., 2015, 32(06): 094703
[3] HOU Yan, TAO Yu-Jia, HUAI Xiu-Lan. Numerical Simulation of Droplets Impacting on a Liquid Film with a Vapor Bubble Growing[J]. Chin. Phys. Lett., 2014, 31(1): 094703
[4] WANG Zheng-Dao, YANG Jian-Fei, WEI Yi-Kun, QIAN Yue-Hong. A New Extrapolation Treatment for Boundary Conditions in Lattice Boltzmann Method[J]. Chin. Phys. Lett., 2013, 30(9): 094703
[5] SUN Dong-Ke, JIANG Di, XIANG Nan, CHEN Ke, NI Zhong-Hua. An Immersed Boundary-Lattice Boltzmann Simulation of Particle Hydrodynamic Focusing in a Straight Microchannel[J]. Chin. Phys. Lett., 2013, 30(7): 094703
[6] WEN Bing-Hai, CHEN Yan-Yan, ZHANG Ren-Liang, ZHANG Chao-Ying, FANG Hai-Ping . Lateral Migration and Nonuniform Rotation of Biconcave Particle Suspended in Poiseuille Flow[J]. Chin. Phys. Lett., 2013, 30(6): 094703
[7] GAO Hao-Tian, QIN Feng-Hua, HUANG Wei-Xi, SUN De-Jun. Multiple Modes of Filament Flapping in a Uniform Flow[J]. Chin. Phys. Lett., 2012, 29(9): 094703
[8] NIE De-Ming, LIN Jian-Zhong, and ZHANG Kai. Flow Patterns in the Sedimentation of a Capsule-Shaped Particle[J]. Chin. Phys. Lett., 2012, 29(8): 094703
[9] WEI Yi-Kun, QIAN Yue-Hong. Reducing Spurious Velocities at the Interfaces of Two-Phase Flows for Lattice Boltzmann Simulations[J]. Chin. Phys. Lett., 2012, 29(6): 094703
[10] TAO Yu-Jia, HUAI Xiu-Lan, LI Zhi-Gang. Numerical Simulation of Vapor Bubble Growth and Heat Transfer in a Thin Liquid Film[J]. Chin. Phys. Lett., 2009, 26(7): 094703
[11] XIA Yong, LU De-Tang, LIU Yang, XU You-Sheng. Lattice Boltzmann Simulation of the Cross Flow Over a Cantilevered and Longitudinally Vibrating Circular Cylinder[J]. Chin. Phys. Lett., 2009, 26(3): 094703
[12] LI Hua-Bing, JIN Li, QIU Bing. Deformation of Two-Dimensional Nonuniform-Membrane Red Blood Cells Simulated by a Lattice[J]. Chin. Phys. Lett., 2008, 25(11): 094703
[13] RAO Yong, NI Yu-Shan, LIU Chao-Feng. Multi-Bifurcation Effect of Blood Flow by Lattice Boltzmann Method[J]. Chin. Phys. Lett., 2008, 25(11): 094703
[14] Rafael Cortell. A Numerical Tackling on Sakiadis Flow with Thermal Radiation[J]. Chin. Phys. Lett., 2008, 25(4): 094703
[15] TAN Xin-Yu, ZHANG Duan-Ming, FENG Sheng-Qin, LI Zhi-Hua, LIU Gao-Bin, FANG Ran-Ran, SUN Min. A New Dynamics Expansion Mechanism for Plasma during Pulsed Laser Deposition[J]. Chin. Phys. Lett., 2008, 25(1): 094703
Viewed
Full text


Abstract