Chin. Phys. Lett.  2012, Vol. 29 Issue (9): 094702    DOI: 10.1088/0256-307X/29/9/094702
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Multiple Modes of Filament Flapping in a Uniform Flow
GAO Hao-Tian1, QIN Feng-Hua1**, HUANG Wei-Xi2, SUN De-Jun1
1Department of Modern Mechanics, University of Science and Technology of China, Hefei 230026
2Department of Engineering Mechanics, Tsinghua University, Beijing 100084
Cite this article:   
GAO Hao-Tian, QIN Feng-Hua, HUANG Wei-Xi et al  2012 Chin. Phys. Lett. 29 094702
Download: PDF(696KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The instability of a flexible filament immersed in uniform flow is studied. A numerical simulation based on the immersed boundary method is conducted on a two-dimensional uniform flow past a flapping filament. Different from the conventional bistability behavior, more regions of initial states of filament corresponding to different modes of motion are partitioned at each freestream velocity, and a new stable mode of motion with smaller flapping amplitude is observed. Mode selection highly depends on these initial states.
Received: 01 April 2012      Published: 01 October 2012
PACS:  47.11.-j (Computational methods in fluid dynamics)  
  46.40.Jj (Aeroelasticity and hydroelasticity)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/9/094702       OR      https://cpl.iphy.ac.cn/Y2012/V29/I9/094702
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
GAO Hao-Tian
QIN Feng-Hua
HUANG Wei-Xi
SUN De-Jun
[1] Rayleigh L 1878 Proc. Lond. Math. Soc. s1-10 4
[2] Connell B, Yue D 2007 J. Fluid Mech. 581 33
[3] Shelley M J and Zhang J 2011 Ann. Rev. Fluid Mech. 43 449
[4] Zhang J, Childress S, Libchaber A and Shelley M 2000 Nature 408 835
[5] Watanabe Y, Suzuki S, Sugihara M and Sueoka Y 2002 J. Fluids Struct. 16 529
[6] Shelley M, Vandenberghe N and Zhang J 2005 Phys. Rev. Lett. 94 094302
[7] Eloy C, Lagrange R, Souilliez C and Schouveiler L 2008 J. Fluid Mech. 611 97
[8] Tang D M, Yamamoto H and Dowell E H 2003 J. Fluids Struct. 17 225
[9] Abderrahmane H A, Paidoussis M P, Fayed M and Ng H D 2011 Phys. Rev. E 84 066604
[10] Eloy C, Kofman N and Schouveiler L 2012 J. Fluid Mech. 691 583
[11] Zhu L D and Peskin C 2003 Phys. Fluids 15 1954
[12] Zhu L D and Peskin C 2002 J. Comput. Phys. 179 452
[13] Alben S and Shelley M J 2008 Phys. Rev. Lett. 100 074301
[14] Michelin S, Smith S G L and Glover B J 2008 J. Fluid Mech. 617 1
[15] Huang W X, Shin S J and Sung H J 2007 J. Comput. Phys. 226 2206
[16] Qin F H, Huang W X and Sung H J 2012 Comput. Fluids 55 109
[17] Huang W X and Sung H J 2010 J. Fluid Mech. 653 301
[18] Kim S, Huang W X and Sung H J 2010 J. Fluid Mech. 661 511
Related articles from Frontiers Journals
[1] Tao HU, Meng-Dan HU, Si-si Zhou, Dong-Ke SUN. An Immersed Boundary-Lattice Boltzmann Prediction for Particle Hydrodynamic Focusing in Annular Microchannels[J]. Chin. Phys. Lett., 2018, 35(10): 094702
[2] SUN Dong-Ke, ZHANG Qing-Yu, CAO Wei-Sheng, ZHU Ming-Fang. Simulation of Dendritic Growth with Melt Convection in Solidification of Ternary Alloys[J]. Chin. Phys. Lett., 2015, 32(06): 094702
[3] HOU Yan, TAO Yu-Jia, HUAI Xiu-Lan. Numerical Simulation of Droplets Impacting on a Liquid Film with a Vapor Bubble Growing[J]. Chin. Phys. Lett., 2014, 31(1): 094702
[4] WANG Zheng-Dao, YANG Jian-Fei, WEI Yi-Kun, QIAN Yue-Hong. A New Extrapolation Treatment for Boundary Conditions in Lattice Boltzmann Method[J]. Chin. Phys. Lett., 2013, 30(9): 094702
[5] SUN Dong-Ke, JIANG Di, XIANG Nan, CHEN Ke, NI Zhong-Hua. An Immersed Boundary-Lattice Boltzmann Simulation of Particle Hydrodynamic Focusing in a Straight Microchannel[J]. Chin. Phys. Lett., 2013, 30(7): 094702
[6] WEN Bing-Hai, CHEN Yan-Yan, ZHANG Ren-Liang, ZHANG Chao-Ying, FANG Hai-Ping . Lateral Migration and Nonuniform Rotation of Biconcave Particle Suspended in Poiseuille Flow[J]. Chin. Phys. Lett., 2013, 30(6): 094702
[7] ZHOU Yu-Fen, FENG Xue-Shang. A New Hybrid Numerical Scheme for Two-Dimensional Ideal MHD Equations[J]. Chin. Phys. Lett., 2012, 29(9): 094702
[8] NIE De-Ming, LIN Jian-Zhong, and ZHANG Kai. Flow Patterns in the Sedimentation of a Capsule-Shaped Particle[J]. Chin. Phys. Lett., 2012, 29(8): 094702
[9] WEI Yi-Kun, QIAN Yue-Hong. Reducing Spurious Velocities at the Interfaces of Two-Phase Flows for Lattice Boltzmann Simulations[J]. Chin. Phys. Lett., 2012, 29(6): 094702
[10] TAO Yu-Jia, HUAI Xiu-Lan, LI Zhi-Gang. Numerical Simulation of Vapor Bubble Growth and Heat Transfer in a Thin Liquid Film[J]. Chin. Phys. Lett., 2009, 26(7): 094702
[11] XIA Yong, LU De-Tang, LIU Yang, XU You-Sheng. Lattice Boltzmann Simulation of the Cross Flow Over a Cantilevered and Longitudinally Vibrating Circular Cylinder[J]. Chin. Phys. Lett., 2009, 26(3): 094702
[12] LI Hua-Bing, JIN Li, QIU Bing. Deformation of Two-Dimensional Nonuniform-Membrane Red Blood Cells Simulated by a Lattice[J]. Chin. Phys. Lett., 2008, 25(11): 094702
[13] RAO Yong, NI Yu-Shan, LIU Chao-Feng. Multi-Bifurcation Effect of Blood Flow by Lattice Boltzmann Method[J]. Chin. Phys. Lett., 2008, 25(11): 094702
[14] Rafael Cortell. A Numerical Tackling on Sakiadis Flow with Thermal Radiation[J]. Chin. Phys. Lett., 2008, 25(4): 094702
[15] TAN Xin-Yu, ZHANG Duan-Ming, FENG Sheng-Qin, LI Zhi-Hua, LIU Gao-Bin, FANG Ran-Ran, SUN Min. A New Dynamics Expansion Mechanism for Plasma during Pulsed Laser Deposition[J]. Chin. Phys. Lett., 2008, 25(1): 094702
Viewed
Full text


Abstract