Chin. Phys. Lett.  2012, Vol. 29 Issue (9): 094701    DOI: 10.1088/0256-307X/29/9/094701
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Subgrid-Scale Fluid Statistics along the Inertial Particle Trajectory in Isotropic Turbulence
YI Chao, LI Jing, LIU Zhao-Hui**, WANG Lin, ZHENG Chu-Guang
State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan 430074
Cite this article:   
YI Chao, LI Jing, LIU Zhao-Hui et al  2012 Chin. Phys. Lett. 29 094701
Download: PDF(624KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Fluctuations of sub-grid scale (SGS) velocity and its influence on the motion of particles are important issues for large eddy simulation (LES) of gas-particle turbulence. We obtain the SGS statistics from the direct numerical simulation (DNS) data of homogeneous isotropic turbulent flow, which is filtered by the top filter in physical space. The result shows that the SGS kinetic energy seen by particles reach a minimum value when the Stokes number St closes to 1. Moreover, the turning point shifts towards a larger St as the filter width increases. Different from that observed in DNS, the Lagrangian integral time scale is larger than the Eulerian integral time scale in SGS. For small particles, the Lagrangian timescale of SGS fluid seen by particle is very close to that of the fluid itself. For particles which are large enough, it approaches the Eulerian timescale of SGS fluid. For the intermediate particles, the predicted curve of SGS fluid timescale seen by particle varies with St and its variation is non-monotonic.
Received: 01 April 2012      Published: 01 October 2012
PACS:  47.55.Kf (Particle-laden flows)  
  47.27.E- (Turbulence simulation and modeling)  
  47.27.Gs (Isotropic turbulence; homogeneous turbulence)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/9/094701       OR      https://cpl.iphy.ac.cn/Y2012/V29/I9/094701
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
YI Chao
LI Jing
LIU Zhao-Hui
WANG Lin
ZHENG Chu-Guang
[1] Pope S B 2000 Turbulent Flows (Cambridge: Cambridge University Press)
[2] Armenio V, Piomelli U and Fiorotto V 1999 Phys. Fluids 11 3030
[3] Shotorban B and Mashayek F 2006 J. Turbul. 7 1
[4] Fede P and Simonin O 2006 Phys. Fluids 18 045103
[5] Pozorski J and Apte S V 2009 Int. J. Multiphase Flow 35 118
[6] Jin G D, He G W, Wang L P and Zhang J 2010 Int. J. Multiphase Flow 36 432
[7] Verman B and Geurts B 1994 J. Fluid Mech. 278 351
[8] Eswaran V and Pope S B 1988 Comput. Fluids 16 257
[9] He Z, Liu Z H, Chen S and Zheng C G 2006 Sci. Chin. E 49 210
[10] Liu Y M, Liu Z H, Han H F, Li J, Wang H F and Zheng C G 2009 Chin. Phys. Lett. 26 064402
[11] Balachander S and Maxey M 1989 J. Comput. Phys. 83 96
[12] Ray B and Collins L R 2011 J. Fluid Mech. 680 488
Related articles from Frontiers Journals
[1] Wen-Tao Zhang, Yi An, Qing-Quan Liu, Xiao-Liang Wang, and Yun-Hui Sun. Evolution of Energy in Submerged Granular Column Collapse[J]. Chin. Phys. Lett., 2020, 37(7): 094701
[2] LV Hong, TANG Sheng-Li**, ZHOU Wen-Ping . Direct Numerical Simulation of Particle Migration in a Simple Shear Flow[J]. Chin. Phys. Lett., 2011, 28(8): 094701
[3] LI Jing, LIU Zhao-Hui, WANG Han-Feng, CHEN Sheng, LIU Ya-Ming, HAN Hai-Feng, ZHENG Chu-Guang. Turbulence Modulations in the Boundary Layer of a Horizontal Particle-Laden Channel Flow[J]. Chin. Phys. Lett., 2010, 27(6): 094701
[4] M. CHANDRASEKAR, S. SURESH. Determination of Heat Transport Mechanism in Aqueous Nanofluids Using Regime Diagram[J]. Chin. Phys. Lett., 2009, 26(12): 094701
[5] LIU Ya-Ming, LIU Zhao-Hui, HAN Hai-Feng, LI Jing, WANG Han-Feng, ZHENGChu-Guang. Scalar Statistics along Inertial Particle Trajectory in Isotropic Turbulence[J]. Chin. Phys. Lett., 2009, 26(6): 094701
[6] TANG Yi, PEI Jing, PAN Long-Fa, NI Yi, HU Hua, ZHANG Bu-Qing. Experiments of Multi-Level Read-Only Recording Using Readout Signal Wave-Shape Modulation[J]. Chin. Phys. Lett., 2008, 25(5): 094701
[7] KU Xiao-Ke, LIN Jian-Zhong,. Orientational Distribution of Fibres in Sheared Fibre Suspensions[J]. Chin. Phys. Lett., 2007, 24(6): 094701
[8] SONG Jie, PEI Jing, XU Duan-Yi, XIONG Jian-Ping, CHEN Ken, PAN Long-Fa. Pit Depth and Width Modulation Multilevel Run-Length Limited Read-Only Optical Storage[J]. Chin. Phys. Lett., 2006, 23(6): 094701
[9] LIN Jian-Zhong, SUN Ke, LIN Jiang. Distribution of Orientations in Fibre Suspension Flowing in a Turbulent Boundary Layer[J]. Chin. Phys. Lett., 2005, 22(12): 094701
[10] LIN Jian-Zhong, WANG Ye-Long, James A. Olsen. Sedimentation of Rigid Cylindrical Particles with Mechanical Contacts[J]. Chin. Phys. Lett., 2005, 22(3): 094701
[11] TIAN Ju-Ping, YAO Kai-Lun,. Viscous Fingering Patterns and Fractal Nature in Two-Dimension Porous Media[J]. Chin. Phys. Lett., 2001, 18(10): 094701
[12] TIAN Ju-Ping, YAO Kai-Lun,. Viscous Fingering in Correlated Site-Bond Square Lattice[J]. Chin. Phys. Lett., 2001, 18(4): 094701
[13] YU Hui-dan, ZHAO Kai-hua. A New Lattice Boltzmann Model for Two-Phase Fluid[J]. Chin. Phys. Lett., 1999, 16(4): 094701
[14] TIAN Ju-ping, YAO Kai-lun,. Computer Simulation of Radial Viscous Fingering in Two-Dimension Porous Media[J]. Chin. Phys. Lett., 1998, 15(8): 094701
[15] TIAN Ju-ping, YAO Kai-lun,. Fractal Nature of Viscous Fingering in Random Sierpinski Carpet[J]. Chin. Phys. Lett., 1998, 15(7): 094701
Viewed
Full text


Abstract