Chin. Phys. Lett.  2012, Vol. 29 Issue (9): 094210    DOI: 10.1088/0256-307X/29/9/094210
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
High Conversion Efficiency and Power Stability of 532 nm Generation from an External Frequency Doubling Cavity
ZHAO Yang1,2**, LIN Bai-Ke1, LI Ye1, ZHANG Hong-Xi3, CAO Jian-Ping1, FANG Zhan-Jun1, LI Tian-Chu1, ZANG Er-Jun1,2
1Division of Time and Frequency Metrology, National Institute of Metrology, Beijing 100013
2Department of Precision Instruments and Mechanology, Tsinghua University, Beijing 100084
341st Instruments of China Electronics Technology Group Corporation, Qingdao 266555
Cite this article:   
ZHAO Yang, LIN Bai-Ke, LI Ye et al  2012 Chin. Phys. Lett. 29 094210
Download: PDF(574KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We present a high-efficiency 532 nm green light conversion from an external cavity-enhanced second harmonic generation (SHG) with a periodically poled KTP crystal (PPKTP). The cavity is a bow-tie ring configuration with a unitized structure. When the impedance matching is optimized, the coupling efficiency of the fundamental is as high as 95%. Taking into account both the high power output of the second harmonic and the stability of the system, we obtain over 500 mW green passing through the output cavity mirror, corresponding to a net conversion efficiency higher than 75.2%. Under these operating conditions, the power stability is better than ±0.25% during 5 h. It is the highest conversion efficiency and power stability ever produced in the bow-tie ring cavity with PPKTP for 532 nm generation.
Received: 02 March 2012      Published: 01 October 2012
PACS:  42.65.Ky (Frequency conversion; harmonic generation, including higher-order harmonic generation)  
  42.79.Nv (Optical frequency converters)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/9/094210       OR      https://cpl.iphy.ac.cn/Y2012/V29/I9/094210
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHAO Yang
LIN Bai-Ke
LI Ye
ZHANG Hong-Xi
CAO Jian-Ping
FANG Zhan-Jun
LI Tian-Chu
ZANG Er-Jun
[1] Hong F L et al 2004 J. Opt. Soc. Am. B 21 88
[2] Zang E J, Cao J P, Li Y, Yang T and Hong D M 2007 Opt. Lett. 32 250
[3] Picard S et al 2003 Appl. Opt. 42 1019
[4] Nevsky A Y et al 2001 Opt. Commun. 192 263
[5] Arie A et al 1998 Opt. Lett. 23 28
[6] Gerstenberger D C, Tye G E and Wallace R W 1991 Opt. Lett. 16 992
[7] Paschotta R et al 1994 Opt. Lett. 19 1325
[8] Li Y, Yang S, Zhang S and Zhang K 2006 Opt. Commun. 265 576
[9] Zang E J, Cao J P, Zhong M C, Li C Y, Shen N C, Hong D M, Cui L R, Zhu Z and Liu A H 2003 Acta Opt. Sin. 23 335 (in Chinese)
[10] Targat R L, Zondy J J and Lemonde P 2005 Opt. Commun. 247 471
[11] Boyd G D and Kleinman D 1968 J. Appl. Phys. 39 3597
[12] Vainio M, Bernard J E and Marmet L 2011 Appl. Phys. B 104 897
Related articles from Frontiers Journals
[1] Jing Zhao, Jinlei Liu, Xiaowei Wang, Jianmin Yuan, and Zengxiu Zhao. Real-Time Observation of Electron-Hole Coherence Induced by Strong-Field Ionization[J]. Chin. Phys. Lett., 2022, 39(12): 094210
[2] Yue Lang, Zhaoyang Peng, and Zengxiu Zhao. Multiband Dynamics of Extended Harmonic Generation in Solids under Ultraviolet Injection[J]. Chin. Phys. Lett., 2022, 39(11): 094210
[3] Hui Li, Haigang Liu, Yangfeifei Yang, Ruifeng Lu, and Xianfeng Chen. Nonlinear Generation of Perfect Vector Beams in Ultraviolet Wavebands[J]. Chin. Phys. Lett., 2022, 39(3): 094210
[4] Xiaoli Guo, Cheng Jin, Ziqiang He, Song-Feng Zhao, Xiao-Xin Zhou, and Ya Cheng. Retrieval of Angle-Dependent Strong-Field Ionization by Using High Harmonics Generated from Aligned N$_{2}$ Molecules[J]. Chin. Phys. Lett., 2021, 38(12): 094210
[5] Hongdan Zhang, Xiwang Liu, Facheng Jin, Ming Zhu, Shidong Yang, Wenhui Dong, Xiaohong Song, and Weifeng Yang. Coherent Control of High Harmonic Generation Driven by Metal Nanotip Photoemission[J]. Chin. Phys. Lett., 2021, 38(6): 094210
[6] Jin Zhang, Lin-Qiang Hua, Zhong Chen, Mu-Feng Zhu, Cheng Gong, and Xiao-Jun Liu. Extreme Ultraviolet Frequency Comb with More than 100 μW Average Power below 100 nm[J]. Chin. Phys. Lett., 2020, 37(12): 094210
[7] Fan Xiao , Xiaohui Fan , Li Wang , Dongwen Zhang , Jianhua Wu , Xiaowei Wang, and Zengxiu Zhao. Generation of Intense Sub-10 fs Pulses at 385 nm[J]. Chin. Phys. Lett., 2020, 37(11): 094210
[8] Jing-Jie Hao, Wei Tu, Nan Zong, Yu Shen, Shen-Jin Zhang, Yong Bo, Qin-Jun Peng, Zu-Yan Xu. Coaxial Multi-Wavelength Generation in YVO$_{4}$ Crystal with Stimulated Raman Scattering Excited by a Picosecond-Pulsed 1064 Laser[J]. Chin. Phys. Lett., 2020, 37(4): 094210
[9] Jian-Hui Ma, Hui-Qin Hu, Yu Chen, Guang-Jian Xu, Hai-Feng Pan, E Wu. High-Efficiency Broadband Near-Infrared Single-Photon Frequency Upconversion and Detection[J]. Chin. Phys. Lett., 2020, 37(3): 094210
[10] Wen-Bing Li, Qiang Hao, Yuan-Bo Du, Shao-Qing Huang, Peter Yun, Ze-Huang Lu. Demonstration of a Sub-Sampling Phase Lock Loop Based Microwave Source for Reducing Dick Effect in Atomic Clocks[J]. Chin. Phys. Lett., 2019, 36(7): 094210
[11] Li Zhao, Zhi-Jing Chen, Hai-Bo Sang, Bai-Song Xie. Spatial Characteristics of Thomson Scattering Spectra in Laser and Magnetic Fields[J]. Chin. Phys. Lett., 2019, 36(7): 094210
[12] Jie Shao, Cai-Ping Zhang, Jing-Chao Jia, Jun-Lin Ma, Xiang-Yang Miao. Effect of Carrier Envelope Phase on High-Order Harmonic Generation from Solid[J]. Chin. Phys. Lett., 2019, 36(5): 094210
[13] Bin Zhang, Jian Zhao, Zeng-Xiu Zhao. Multi-Electron Effects in Attosecond Transient Absorption of CO Molecules[J]. Chin. Phys. Lett., 2018, 35(4): 094210
[14] Tian-Run Feng, Hui-Zhen Kang, Lei Feng, Jia Yang, Tian-Hao Zhang, Feng Song, Jing-Jun Xu, Jian-Guo Tian, L. I. Ivleva. Noncolinear Second-Harmonic Generation Pairs and Their Scatterings in Nd$^{3+}$:SBN Crystals with Needle-Like Ferroelectric Domains[J]. Chin. Phys. Lett., 2018, 35(3): 094210
[15] Xia-Zhi Li, Hong-Bin Zhuo, De-Bin Zou, Shi-Jie Zhang, Hong-Yu Zhou, Na Zhao, Yue Lang, De-Yao Yu. High-Order-Harmonic Generation from a Relativistic Circularly Polarized Laser Interacting with Over-Dense Plasma Grating[J]. Chin. Phys. Lett., 2017, 34(9): 094210
Viewed
Full text


Abstract