FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
|
|
|
|
Ultrabroad Terahertz Bandpass Filter Based on a Multiple-Layered Metamaterial with Flexible Substrates |
LIANG Lan-Ju1**, YAO Jian-Quan2,3, YAN Xin1 |
1College of Opto-electronics Engineering, Zaozhuang University, Zaozhuang 277160 2College of Precision Instrument and Opto-electronics Engineering, Institute of Laser and Opto-electronics, Tianjin University, Tianjin 300072 3Key Laboratory of Opto-electronics Information Technology (Ministry of Education), Tianjin University, Tianjin 300072 |
|
Cite this article: |
LIANG Lan-Ju, YAO Jian-Quan, YAN Xin 2012 Chin. Phys. Lett. 29 094209 |
|
|
Abstract An ultrabroad and sharp transition bandpass flexible terahertz (THz) filter is designed using a multiple-layered metamaterial. This bandpass filter has excellent filtering capability, with a 3 dB bandwidth of about 0.47 THz and sharp band-edge transitions of 80 dB/THz and 96 dB/THz, respectively, and it can be realized by a coupling individual resonance mode. We find that the geometry parameters have an influence on the transmission profile, which are capable of giving us meaningful guidance in design of high profile bandpass THz filters. The numerical results show that the multiple-layered flexible metamaterial provides an effective way to achieve ultrabroad THz devices.
|
|
Received: 13 April 2012
Published: 01 October 2012
|
|
PACS: |
42.79.Ci
|
(Filters, zone plates, and polarizers)
|
|
41.20.Jb
|
(Electromagnetic wave propagation; radiowave propagation)
|
|
78.20.Ci
|
(Optical constants (including refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity))
|
|
42.70.-a
|
(Optical materials)
|
|
|
|
|
[1] Ferguson B and Zhang X C 2002 Nat. Mater. 1 26 [2] Tonouchi M 2007 Nat. Phonton. 1 97 [3] O'Hara J F et al 2008 Opt. Exp. 16 1786 [4] Thomas K O and Nagatsuma T D 2011 Infrared Milli Terahz Waves 32 143 [5] Qi C C and Cheng Z H 2009 Chin. Phys. Lett. 26 064201 [6] Zhu B et al 2009 Chin. Phys. Lett. 26 114102 [7] Chiang Y J et al 2011 Appl. Phys. Lett. 99 191909 [8] Tao H et al 2008 Opt. Exp. 16 7181 [9] Zhu W R et al 2010 Chin. Phys. Lett. 27 014204 [10] Shchegolkov D Y et al 2010 Phys. Rev. B 82 205117 [11] Han N R et al 2011 Opt. Exp. 19 6990 [12] Han J G et al 2009 Opt. Exp. 17 16527 [13] Yeh T T, Genovesi S, Monorchio A, Prati E, Costa F, Huang T Y and Yen T J 2012 Opt. Exp. 20 7580 [14] Zhang X Q, Gu J Q, Cao W, Han J G, Lakhtakia A and Zhang W L 2012 Opt. Lett. 37 906 [15] Grant J, Ma Y, Saha S, Khalid A and Cumming D R S 2011 Opt. Lett. 36 3476 [16] Du Q J, Yang H W, Wang X C and Lv T 2012 Opt. Com 285 980 [17] Tao H, Strikwerda A C, Bingham C M, Padilla W J, Zhang X and Averitt R D 2008 J. Phys. D: Appl. Phys. 41 232004 [18] Zhou J, Economon E N, Koschny T and Soukoulis C M 2008 Opt. Exp. 16 11147 [19] Chase S T and Joseph R D 1983 Appl. Opt. 22 1775 [20] Fedotov V A, Rose M, Prosvimin S L, Papasimakis N and Zheludev N I 2007 Phys. Rev. Lett. 99 147401 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|