Chin. Phys. Lett.  2012, Vol. 29 Issue (9): 094206    DOI: 10.1088/0256-307X/29/9/094206
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Fiber-Optic Solution Concentration Sensor Based on a Pressure-Induced Long-Period Grating in a Composite Waveguide
SHI Sheng-Hui1, ZHOU Xiao-Jun1**, ZHANG Zhi-Yao1, LAN Lan1, YIN Cong1, LIU Yong1,2
1School of Opto-electronic Information, University of Electronic Science and Technology of China, Chengdu 610054
2State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054
Cite this article:   
SHI Sheng-Hui, ZHOU Xiao-Jun, ZHANG Zhi-Yao et al  2012 Chin. Phys. Lett. 29 094206
Download: PDF(603KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A fiber-optic solution concentration sensor based on a pressure-induced long-period grating (LPG) in a composite optical waveguide is proposed. The composite waveguide consists of a standard single-mode fiber with its coating stripped away, a teflon-cannula and the medium to be measured. An experiment has been carried out to measure the concentration of the sodium chloride (NaCl) solution. The results show that the central resonant wavelengths of the LPG shift towards shorter wavelengths when the concentration of the NaCl solution increases. The central resonant wavelength of the LP14 cladding mode exhibits a total blue shift of 4.13 nm in the NaCl solution concentration range of 0–25%, which corresponds to a sensing sensitivity of 0.17 nm/%.
Received: 04 January 2012      Published: 01 October 2012
PACS:  42.81.Pa (Sensors, gyros)  
  42.81.Bm (Fabrication, cladding, and splicing)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/9/094206       OR      https://cpl.iphy.ac.cn/Y2012/V29/I9/094206
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
SHI Sheng-Hui
ZHOU Xiao-Jun
ZHANG Zhi-Yao
LAN Lan
YIN Cong
LIU Yong
[1] Yeo T L, Sun T and Grattan K T V 2008 Sens. Actuat. A 144 280
[2] Lee B 2003 Opt. Fiber Technol. 9 57
[3] Falciai R, Mignani A G and Vannini A 2001 Sens. Actuat. B 74 74
[4] Chong J H, Shum P, Haryono H, Yohana A, Rao M K, Lu C and Zhu Y 2004 Opt. Commun. 229 65
[5] Rindorf L and Bang O 2008 Opt. Lett. 33 563
[6] Kapoor A and Sharma E K 2009 Appl. Opt. 48 G88
[7] Qu H and Skorobogatiy M 2011 Appl. Phys. Lett. 98 201114
[8] Allsop T, Reeves R and Webb D J, Bennion I and Neal R 2002 Rev. Sci. Instrum. 73 1702
[9] Swart P L 2004 Meas. Sci. Technol. 15 1576
[10] Liang R B, Sun Q Z, Wo J H and Liu D M 2011 Acta Phys. Sin. 60 104221 (in Chinese)
[11] André P S, Ferreira R A S, Correia C M L, Kalinowshy H, Xin X J and Pinto J L 2006 Chin. Phys. Lett. 23 2480
[12] Iadicicco A, Cusano A, Cutolo A, Bernini R and Giordano M 2004 IEEE Photon. Technol. Lett. 16 1149
[13] Schroeder K, Ecke W and Mueller R 2001 Meas. Sci. Technol. 12 757
[14] Jin Y X, Chan C C, Zhang Y F and Dong X Y 2010 Opt. Commun. 283 1303
[15] Yu X, Shum P and Ren G B 2008 IEEE Photon. Technol. Lett. 20 1688
[16] Zhu T, Song Y, Rao Y J and Zhu Y 2009 Acta Phys. Sin. 58 4738 (in Chinese)
[17] Rao Y J, Wang Y P, Zhu T and Ran Z L 2003 Chin. Phys. Lett. 20 72
[18] Zhou X J, Shi S H, Zhang Z Y, Zou J and Liu Y 2011 Opt. Exp. 19 5860
[19] Krishna V, Fan C H and Longtin J P 2000 Rev. Sci. Instrum. 71 3864
Related articles from Frontiers Journals
[1] Ya-Jing Jiang, Xing-Dong Zhao, Shi-Qiang Xia, Chun-Jie Yang, Wu-Ming Liu, and Zun-Lue Zhu. Nonlinear Optomechanically Induced Transparency in a Spinning Kerr Resonator[J]. Chin. Phys. Lett., 2022, 39(12): 094206
[2] Xian-Ping Luo, Fei-Ru Wang, Chun-Lei Chen, Ling-Li Zhang, Lei Wang, Wei-Min Sun, Yong-Jun Liu. A Novel Mach–Zehnder Interferometer Based on Hybrid Liquid Crystal–Photonic Crystal Fiber[J]. Chin. Phys. Lett., 2017, 34(12): 094206
[3] ZHANG Yun-Shan, QIAO Xue-Guang, SHAO Min, LIU Qin-Peng. In-Fiber Mach–Zehnder Interferometer Based on Waist-Enlarged Taper and Core-Mismatching for Strain Sensing[J]. Chin. Phys. Lett., 2015, 32(06): 094206
[4] LIU Ning-Liang, LIU Shu-Hui, LU Pei-Xiang. A Femtosecond-Laser-Induced Fiber Bragg Grating with Supermode Resonances for Sensing Applications[J]. Chin. Phys. Lett., 2014, 31(09): 094206
[5] WEN Xiao-Dong, NING Ti-Gang, YOU Hai-Dong, KANG Ze-Xin, LI Jing, LI Chao, FENG Ting, YU Shao-Wei, JIAN Wei. Analysis and Measurement of the Displacement Sensor Based on an Up-tapered Mach–Zehnder Interferometer[J]. Chin. Phys. Lett., 2014, 31(03): 094206
[6] XU Bin-Zong, LIU Jie-Tao, HU Hai-Feng, WANG Li-Na, WEI Xin, SONG Guo-Feng. A High Sensitivity Index Sensor Based on Magnetic Plasmon Resonance in Metallic Grating with Very Narrow Slits[J]. Chin. Phys. Lett., 2013, 30(4): 094206
[7] XU Ben, LI Jian-Qing, LI Yi, DONG Xin-Yong. A Thin-Core Fiber Modal Interferometer for Liquid-Level Sensing[J]. Chin. Phys. Lett., 2012, 29(10): 094206
[8] XU Ben, LI Yi, DONG Xin-Yong, JIN Shang-Zhong, ZHANG Zai-Xuan. Highly Sensitive Refractive Index Sensor Based on a Cladding-Etched Thin-Core Fiber Sandwiched between Two Single-Mode Fibers[J]. Chin. Phys. Lett., 2012, 29(9): 094206
[9] ZHANG Ji-Huang, LIU Ning-Liang, WANG Ying, JI Ling-Ling, LU Pei-Xiang. Dual-Peak Bragg Gratings Inscribed in an All-Solid Photonic Bandgap Fiber for Sensing Applications[J]. Chin. Phys. Lett., 2012, 29(7): 094206
[10] LIU Cheng-Xiang, ZHANG Li, WU Xu, RUAN Shuang-Chen. High-Stability Superfluorescent Fiber Source Based on an Er3+-Doped Photonic Crystal Fiber[J]. Chin. Phys. Lett., 2012, 29(6): 094206
[11] HONG Ling-Fei**, ZHANG Chun-Xi, FENG Li-Shuang, YU Huai-Yong, LEI Ming. Frequency Modulation Induced by using the Linear Phase Modulation Method used in a Resonator Micro-optic Gyro[J]. Chin. Phys. Lett., 2012, 29(1): 094206
[12] LUO Tao, GU Zheng-Tian** . A New Type of Absorbance Sensors Based on Long-Period Fiber Gratings[J]. Chin. Phys. Lett., 2011, 28(5): 094206
[13] LI Zheng-Yong, WU Chong-Qing, SHANG Chao, YU Xiang-Zhi . Mueller-Matrix-Based Differential Rotation Method for Precise Measurement of Fiber Birefringence Vector[J]. Chin. Phys. Lett., 2010, 27(10): 094206
[14] LI Ming-Shan, YANG Chang-Xi. Laser-Induced Silver Nanoparticles Deposited on Optical Fiber Core for Surface-Enhanced Raman Scattering[J]. Chin. Phys. Lett., 2010, 27(4): 094206
[15] RAO Yun-Jiang, XU Bing, RAN Zeng-Ling, GONG Yuan. Micro Extrinsic Fiber-Optic Fabry-Perot Interferometric Sensor Based on Erbium- and Boron-Doped Fibers[J]. Chin. Phys. Lett., 2010, 27(2): 094206
Viewed
Full text


Abstract