Chin. Phys. Lett.  2012, Vol. 29 Issue (9): 094201    DOI: 10.1088/0256-307X/29/9/094201
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Correlation of Exciton and Biexciton from a Single InAs Quantum Dot
LI Yu-Long, CHEN Geng, TANG Jian-Shun, LI Chuan-Feng**
Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026
Cite this article:   
LI Yu-Long, CHEN Geng, TANG Jian-Shun et al  2012 Chin. Phys. Lett. 29 094201
Download: PDF(568KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The peaks of exciton and biexciton from the single quantum dot (QD) micro-photoluminescence spectra are identified by observing the intensity of those peaks in relation to increasing excitation power. In order to further verify the properties of the exciton and biexciton, we perform auto- and cross correlation measurements. Using the former, we confirm the antibunching property of the signal light emitted from the single QD. Using cross correlation measurement, we verify that the exciton and biexciton emissions originate from the same QD and they are strongly correlated with each other. Lastly, we analyze the behavior of the cross correlation function in both the cases of saturated and unsaturated excitation of the QD.
Received: 01 April 2012      Published: 01 October 2012
PACS:  42.50.Dv (Quantum state engineering and measurements)  
  78.67.Hc (Quantum dots)  
  78.55.-m (Photoluminescence, properties and materials)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/9/094201       OR      https://cpl.iphy.ac.cn/Y2012/V29/I9/094201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LI Yu-Long
CHEN Geng
TANG Jian-Shun
LI Chuan-Feng
[1] Michler P, Kiraz A, Becher C, Schoenfeld W V, Petroff P M, Zhang L D, Hu E and Imamo?lu A 2000 Science 290 2282
[2] Santori C, Pelton M, Solomon G, Dale Y and Yamamoto Y 2001 Phys. Rev. Lett. 86 1502
[3] Zwiller V, Blom H, Jonsson P, Panev N, Jeppesen S, Tsegaye T, Goobar E, Pistol M E, Samuelson L and Bj?rk G 2001 Appl. Phys. Lett. 78 2476
[4] Bimberg D, Member S, I E E E, Stock E, Lochmann A, Schliwa A, T?fflinger J A, Unrau W, Münnix M, Rodt S, Haisler V A, Toropov A I, Bakarov A and Kalagin A K 2009 IEEE Photon. J. 1 58
[5] Stevenson R M, Young R J, Atkinson P, Cooper K, Ritchie D A and Shields A J 2006 Nature Phys. 439 179
[6] Akopian N, Lindner N H, Poem E, Berlatzky Y, Avron J, Gershoni D, Gerardot B D and Petroff P M 2006 Phys. Rev. Lett. 96 130501
[7] Greilich A, Schwab M, Berstermann T, Auer T, Oulton R, Yakovlev D R, Bayer M, Stavarache V, Reuter D and Wieck A 2006 Phys. Rev. B 73 045323
[8] Michler P, Imamo?lu A, Mason M D, Carson P J, Strouse G F and Buratto S K 2000 Nature Phys. 406 968
[9] Becher C, Kiraz A, Michler P, Imamo?lu A, Schoenfeld W V, Petroff P M, Zhang L D and Hu E 2001 Phys. Rev. B 63 121312(R)
[10] Elvira D, Hostein R, Fain B, Monniello L, Michon A, Beaudoin G, Braive R, Philip I R, Abram I, Sagnes I and Beveratos A 2011 Phys. Rev. B 84 195302
[11] Birowosuto M D, Sumikura H, Matsuo S, Taniyama H, Veldhoven P J, N?tzel R and Notomi M 2012 Sci. Rep. 2 321
[12] Hoang T B, Beetz J, Midolo L, Skacel M, Lermer M, Kamp M, H?fling S, Balet L, Chauvin N and Fiore A 2012 Appl. Phys. Lett. 100 061122
[13] Laucht A, Pütz S, Günthner T, Hauke N, Saive R, Frédérick S, Bichler M, Amann M C, Holleitner A W, Kaniber M and Finley J J 2012 arXiv:1201.5153v1
[14] Reinhard A, Volz T, Winger M, Badolato A, Hennessy K J, Hu E L and Imamo?lu A 2011 Nature Photon. 6 93
[15] Rivoire K, Buckley S, Song Y C, Lee M L and Vu?kovi? J 2012 Phys. Rev. B 85 045319
[16] Bennett C H and Brassard G 1984 IEEE Int. Conf. Comput. Syst. Signal Processing (Bangalore India) 175
[17] Loss D and DiVincenzo D P 1998 Phys. Rev. A 57 120
[18] Bouwmeester D, Ekert A and Zeilinger A 2000 The Physics of Quantum Information (Berlin: Springer)
[19] Moreau E, Robert I, Manin L, Mieg V T, Gérard J M and Abram I 2001 Phys. Rev. Lett. 87 183601
[20] Shirane M, Igarashi Y, Ota Y, Nomura M, Kumagai N, Ohkouchi S, Kirihara A, Ishida S, Iwamoto S, Yorazu S and Arakawa Y 2010 Physica E 42 2563
[21] Benson O, Santori C, Pelton M and Yamamoto Y 2000 Phys. Rev. Lett. 84 2513
[22] Troiani F, Perea J I and Tejedor C 2006 Phys. Rev. B 74 235310
[23] Pathak P K and Hughes S 2009 Phys. Rev. B 80 155325
[24] Dousse A, Suffczyński J, Krebs O, Beveratos A, Lema?tre A, Sagnes I, Bloch J, Voisin P and Senellart P 2010 Appl. Phys. Lett. 97 081104
[25] Michler P 2003 Single Quantum Dots: Fundamentals, Applications and NewConcepts, Topics in Correlated Photon Pairs from a Single Quantum Dot (Berlin: Springer) vol 338
Related articles from Frontiers Journals
[1] Qiuxin Zhang, Chenhao Zhu, Yuxin Wang, Liangyu Ding, Tingting Shi, Xiang Zhang, Shuaining Zhang, and Wei Zhang. Experimental Test of Contextuality Based on State Discrimination with a Single Qubit[J]. Chin. Phys. Lett., 2022, 39(8): 094201
[2] Lu-Ji Wang, Jia-Yi Lin, and Shengjun Wu. State Classification via a Random-Walk-Based Quantum Neural Network[J]. Chin. Phys. Lett., 2022, 39(5): 094201
[3] Shaowei Li, Daojin Fan, Ming Gong, Yangsen Ye, Xiawei Chen, Yulin Wu, Huijie Guan, Hui Deng, Hao Rong, He-Liang Huang, Chen Zha, Kai Yan, Shaojun Guo, Haoran Qian, Haibin Zhang, Fusheng Chen, Qingling Zhu, Youwei Zhao, Shiyu Wang, Chong Ying, Sirui Cao, Jiale Yu, Futian Liang, Yu Xu, Jin Lin, Cheng Guo, Lihua Sun, Na Li, Lianchen Han, Cheng-Zhi Peng, Xiaobo Zhu, and Jian-Wei Pan. Realization of Fast All-Microwave Controlled-Z Gates with a Tunable Coupler[J]. Chin. Phys. Lett., 2022, 39(3): 094201
[4] Ao-Lin Guo , Tao Tu, Le-Tian Zhu , and Chuan-Feng Li. High-Fidelity Geometric Gates with Single Ions Doped in Crystals[J]. Chin. Phys. Lett., 2021, 38(9): 094201
[5] Shaoxing Liu, Xuanying Lai, Ce Yang, and J. F. Chen. Towards High-Dimensional Entanglement in Path: Photon-Source Produced from a Two-Dimensional Atomic Cloud[J]. Chin. Phys. Lett., 2021, 38(8): 094201
[6] Bo Gong , Tao Tu, Ao-Lin Guo , Le-Tian Zhu , and Chuan-Feng Li. A Noise-Robust Pulse for Excitation Transfer in a Multi-Mode Quantum Memory[J]. Chin. Phys. Lett., 2021, 38(4): 094201
[7] Hongbin Liang, Jiancheng Pei, and Xiaoguang Wang. Enhancing Phase Sensitivity in Mach–Zehnder Interferometers for Arbitrary Input States[J]. Chin. Phys. Lett., 2020, 37(7): 094201
[8] Hao Cao, Wenping Ma, Ge Liu, Liangdong Lü, Zheng-Yuan Xue. Quantum Secure Multiparty Computation with Symmetric Boolean Functions[J]. Chin. Phys. Lett., 2020, 37(5): 094201
[9] Kun-Peng Wang, Jun Zhuang, Xiao-Dong He, Rui-Jun Guo, Cheng Sheng, Peng Xu, Min Liu, Jin Wang, Ming-Sheng Zhan. High-Fidelity Manipulation of the Quantized Motion of a Single Atom via Stern–Gerlach Splitting[J]. Chin. Phys. Lett., 2020, 37(4): 094201
[10] Xiao-Yu Zhao, Jun-Hui Huang, Zhi-Yao Zhuo, Yong-Zhou Xue, Kun Ding, Xiu-Ming Dou, Jian Liu, Bao-Quan Sun. Optical Properties of Atomic Defects in Hexagonal Boron Nitride Flakes under High Pressure[J]. Chin. Phys. Lett., 2020, 37(4): 094201
[11] Xing-Yu Zhu, Tao Tu, Ao-Lin Guo, Zong-Quan Zhou, Guang-Can Guo. Measurement of Spin Singlet-Triplet Qubit in Quantum Dots Using Superconducting Resonator[J]. Chin. Phys. Lett., 2020, 37(2): 094201
[12] Shuang-Shuang Fu, Shun-Long Luo. Quantifying Process Nonclassicality in Bosonic Fields[J]. Chin. Phys. Lett., 2019, 36(10): 094201
[13] Sheng-Li Zhang, Song Yang. Methods for Derivation of Density Matrix of Arbitrary Multi-Mode Gaussian States from Its Phase Space Representation[J]. Chin. Phys. Lett., 2019, 36(9): 094201
[14] Yao Chen, Fo-Liang Lin, Xi Liang, Nian-Quan Jiang. Programmable Quantum Processor with Quantum Dot Qubits[J]. Chin. Phys. Lett., 2019, 36(7): 094201
[15] Rui Liu, Ling-Jun Kong, Zhou-Xiang Wang, Yu Si, Wen-Rong Qi, Shuang-Yin Huang, Chenghou Tu, Yongnan Li, Hui-Tian Wang. Two-Photon Interference Constructed by Two Hong–Ou–Mandel Effects in One Mach-Zehnder Interferometer[J]. Chin. Phys. Lett., 2018, 35(9): 094201
Viewed
Full text


Abstract