NUCLEAR PHYSICS |
|
|
|
|
The ab initio Calculation of Electric Field Gradient at the Site of P Impurity in α-Al3O2 |
ZHANG Qiao-Li1, YUAN Da-Qing 1, ZHANG Huan-Qiao1, FAN Ping1, ZUO Yi1, ZHENG Yong-Nan1, K. Masuta2, M. Fukuda2, M. Mihara2, T. Minamisono3, A. Kitagawa4, ZHU Sheng-Yun1** |
1China Institute of Atomic Energy, PO Box 275-50, Beijing 102413 2Department of Physics, Osaka University, Osaka 560-0043, Japan 3Fukui University of Technology, Fukui 910-8505, Japan 4National Institute of Radiological Sciences, Chiba263-8555, Japan |
|
Cite this article: |
ZHANG Qiao-Li, YUAN Da-Qing, ZHANG Huan-Qiao et al 2012 Chin. Phys. Lett. 29 092102 |
|
|
Abstract An ab initio calculation of the electric-field gradient (EFG) at the site of a phosphorous impurity substituting an Al atom in α-Al2O3 is carried out using the WIEN2k code with the full-potential linearized augmented plane wave plus local orbital method (LAPW+lo) in the frame of density functional theory. The atomic lattice relaxations caused by the implanted impurities were calculated for two different charged states to well describe the electronic structure of the doped system. The EFG at the site of the phosphorous impurity in the charged supercell calculated with the exchange-correlation potential of the Wu-Cohen generalized gradient approximation (WC-GGA) is 0.573×1021 V/m2. Then, the nuclear quadrupole moment of the I=3 state in 28P is deduced to be 137 mb from the quadrupole interaction frequency of 190 kHz measured recently by the β-NQR method.
|
|
Received: 05 January 2012
Published: 01 October 2012
|
|
PACS: |
21.60.De
|
(Ab initio methods)
|
|
71.15.Mb
|
(Density functional theory, local density approximation, gradient and other corrections)
|
|
27.30.+t
|
(20 ≤ A ≤ 38)
|
|
|
|
|
[1] Zheng Y N, Zhou D M, Matsuta K and Mihara M 2009 Chin. Phys. C 33 Suppl. 1 215 [2] Matsuta K, Mihara M, et al 2010 Nucl. Phys. A 834 424c [3] Matsuta K, Zhu S Y et al 2010 AIP Conf. Proc. 1235 260 [4] Liang Y J, Li Y S et al 2009 Chin. Phys. B 18 5267 [5] Haas H and Petrilli H M 2000 Phys. Rev. B 61 13588 [6] Blaha P, Schwarz K, Madsen G K H, Kvasnicka D, Luitz J 2001 WIEN2K: An Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties ed Schwarz K (Austria: Vienna University of Technology) [7] Singh D J 1994 Planewaves, Pseudopotentials, and the LAPW Method (Boston: Kluwer Academic) [8] Hohenberg P and Kohn W 1964 Phys. Rev. 136 B864 [9] Kohn W and Sham L J 1965 Phys. Rev. 140 A1133 [10] Blaha P, Schwarz K and P Herzig 1985 Phys. Rev. Lett. 54 1192 [11] Blaha P, Schwarz K and P H Dederichs 1988 Phys. Rev. B 37 2792 [12] Cottenier S, Bellini V, ?akmak M, Manghi F and Rots M 2004 Phys. Rev. B 70 155418 Bellini V, Cottenier S, ?akmak M, Manghi F and Rots M 2004 Phys. Rev. B 70 155419 [13] Errico L A, Fabricius G and Rentería M 2002 Phys. Rev. Lett. 89 055503 [14] Darríba G N, Errico L A, Eversheim P D, Fabricius G, Rentería M et al 2009 Phys. Rev. B 79 115213 [15] Yuan D Q, Zheng Y N, Matsuta K et al 2012 (to be published) [16] Souhassou P S, Lecomte M et al 2001 Acta Crystallogr. A 39 1983 [17] Wu Z, Cohen R E 2006 Phys. Rev. B 73 235116 [18] Perdew J P, Wang Y 1992 Phys. Rev. B 45 13244 [19] Blaha P, Schwarz K and Dederichs P H 1988 Phys. Rev. B 37 2792 Schwarz K, Ambrosch-Draxland C and Blaha P 1990 Phys. Rev. B 42 2051 [20] Matsuta K, Mihara M et al 2010 Hyperfine Interact 198 147 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|