Chin. Phys. Lett.  2012, Vol. 29 Issue (9): 092101    DOI: 10.1088/0256-307X/29/9/092101
NUCLEAR PHYSICS |
Surface and Volume Symmetry Energy Coefficients of a Neutron-Rich Nucleus
MA Chun-Wang1**, YANG Ju-Bao1, YU Mian2, PU Jie1,3, WANG Shan-Shan1, WEI Hui-Ling1
1Department of Physics, Henan Normal University, Xinxiang 453007
2Department of Life Sciences and Technology, Xinxiang Medical University, Xinxiang 453003
3Department of Nuclear Physics, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800
Cite this article:   
MA Chun-Wang, YANG Ju-Bao, YU Mian et al  2012 Chin. Phys. Lett. 29 092101
Download: PDF(714KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Using an isobaric method, the symmetry-energy coefficient (asym) of a neutron-rich nucleus is obtained from experimental binding energies. The shell effects are shown in asym*/A≡4asym/A of nuclei. A (sub)magic neutron magic number N=40 is suggested in a very neutron-rich nucleus, and asym*/A of a nucleus is found to decrease when its mass increases. The asym*/A of a very neutron-rich nucleus with large mass saturates. The volume-symmetry coefficients (bv) and surface-symmetry coefficients (bs) of a neutron-rich nucleus are extracted from a sym*/A by a correlation asym*/A=bv/A?b s/A4/3. It is found that bv and bs decrease when the nucleus becomes more neutron-rich, and tend to saturate in the very neutron-rich nucleus. A linear correlation between b v and bs is obtained in nuclei with different neutron-excess I, and bv of I>7 nuclei is found to coincide with the results of infinite nuclear matter a sym=32 ±4 MeV, and bs/bv of the nucleus is found to coincide with the results of the finite-range liquid-drop model results.
Received: 04 May 2012      Published: 01 October 2012
PACS:  21.65.Ef (Symmetry energy)  
  21.65.Cd (Asymmetric matter, neutron matter)  
  21.10.Dr (Binding energies and masses)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/9/092101       OR      https://cpl.iphy.ac.cn/Y2012/V29/I9/092101
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
MA Chun-Wang
YANG Ju-Bao
YU Mian
PU Jie
WANG Shan-Shan
WEI Hui-Ling
[1] Li B A, Chen L W and Ko C M 2008 Phys. Rep. 464 113
[2] Jiang H, Fu G J, Zhao Y M and Arima A 2010 Phys. Rev. C 82 054317
[3] Jiang H, Fu G J, Sun B, Liu M, Wang N, Wang M, Ma Y G, Lin C J, Zhao Y M, Zhang Y H, Ren Z Z and Arima A 2012 Phys. Rev. C 85 054303
[4] Fu G J, Jiang H, Zhao Y M, Pittel S and Arima A 2010 Phys. Rev. C 82 034304
[5] Fu G J, Lei Y, Jiang H, Zhao Y M, Sun B and Arima A 2011 Phys. Rev. C 84 034311
[6] Wang N and Liu M2011 Phys. Rev. C 84 051303(R)
[7] Wang N, Liu M and Wu X Z2010 Phys. Rev. C 81 044322
[8] Liu M, Wang N, Deng Y and Wu X2011 Phys. Rev. C 84 014333
[9] Moller P, Myers W D, Sagawa H and Yoshida S2012 Phys. Rev. Lett. 108 052501
[10] Goriely S, Chamel N and Pearson J M2010 Phys. Rev. C 82 035804
[11] Dong T K and Ren Z Z2008 Phys. Rev. C 77 064310
[12] Nikolov N, Schunck N, Nazarewicz W, Bender M and Pei J 2011 Phys. Rev. C 83 034305
[13] Stoitsov M, Cakirli R B, Casten R F, Nazarewicz W and Satu?a W 2007 Phys. Rev. Lett. 98 132502
[14] Satu? W, Wyss R A and Rafalski M2006 Phys. Rev. C 74 011301(R)
[15] Danielewicz P and Lee J 2009 Nucl. Phys. A 818 36
[16] Zhang L, Gao Y, Zhang H F, Chen X M, Yu M L and Li J Q 2011 Chin. Phys. Lett. 28 112102
[17] Mei H, Huang Y, Yao J M and Chen H 2012 J. Phys. G: Nucl. Part. Phys. 39 015107
[18] Jiang H, Fu G J, Zhao Y M and Arima A 2012 Phys. Rev. C 85 024301
[19] M?ller P, Nix J R, Myers W D and Swiatecki W J 1995 At. Data Nucl. Data Tables 59 185
[20] Liooarini E and Stringari S 1982 Phys. Lett. B 112 421
[21] Liu M, Wang N, Li Z X and Zhang F S 2010 Phys. Rev. C 82 064306
[22] Huang M, Chen Z, Kowalski S, Ma Y G, Wada R, Keutgen T, Hagel K, Barbui M, Bonasera A, Bottosso C, Materna T, Natowitz J B, Qin L, Rodrigues M R D, Sahu P K and Wang J 2010 Phys. Rev. C 81 044620
[23] Ma C W, Wang F, Ma Y G and Jin C 2011 Phys. Rev. C 83 064620
[24] Ma C W, Pu J, Wang S S and Wei H L 2012 Chin. Phys. Lett. 29 062101
[25] Ma C W, Pu J, Wei H L, Wang S S, Song H L, Zhang S and Chen L 2012 Eur. Phys. J. A 48 78
[26] Ma C W, Song H L, Pu J, Zhang T L, Zhang S, Wang S S, Zhao X L and Chen L 2012 Chin. Phys. C (to be published)
[27] Weizs?cker C F 1935 Z. Phys. 96 431
[28] Bethe H A 1936 Rev. Mod. Phys. 8 82
[29] Green A E S and Edwards D F 1953 Phys. Rev. 91 46
[30] Audi G, Wapstra A H and Thibault C 2003 Nucl. Phys. A 729 337
[31] Nakada H 2010 Phys. Rev. C 81 051302
Related articles from Frontiers Journals
[1] Jun Xu. Constraining Isovector Nuclear Interactions with Giant Dipole Resonance and Neutron Skin in $^{208}$Pb from a Bayesian Approach[J]. Chin. Phys. Lett., 2021, 38(4): 092101
[2] Jian-Min Dong, Wei Zuo, Jian-Zhong Gu. First-Order Symmetry Energy Induced by Neutron–Proton Mass Difference[J]. Chin. Phys. Lett., 2016, 33(10): 092101
[3] Qing-Yang Bu, Zeng-Hua Li, Hans-Josef Schulze. The Brueckner–Hartree–Fock Equation of State for Nuclear Matter and Neutron Skin[J]. Chin. Phys. Lett., 2016, 33(03): 092101
[4] ZHAO Hu, LI Tie-Fu, LIU Qi-Chun, LIU Jian-She, CHEN Wei. Simulation and Characterization of Aluminium Three-Dimensional Resonator for Quantum Computation[J]. Chin. Phys. Lett., 2014, 31(10): 092101
[5] OUYANG Fei, LIU Bei-Bei, CHEN Wei. Nuclear Symmetry Energy from a Relativistic Mean Field Theory[J]. Chin. Phys. Lett., 2013, 30(9): 092101
[6] XU Chang, REN Zhong-Zhou. Effect of Short-Range and Tensor Force Correlations on High-Density Behavior of Symmetry Energy[J]. Chin. Phys. Lett., 2012, 29(12): 092101
[7] YANG Ding, CAO Li-Gang, MA Zhong-Yu. Fully Self-Consistency in Relativistic Random Phase Approximation[J]. Chin. Phys. Lett., 2012, 29(11): 092101
[8] MA Chun-Wang, PU Jie, WANG Shan-Shan, WEI Hui-Ling. The Symmetry Energy from the Neutron-Rich Nucleus Produced in the Intermediate-Energy 40,48Ca and 58,64Ni Projectile Fragmentation[J]. Chin. Phys. Lett., 2012, 29(6): 092101
[9] ZHANG Fang,HU Bi-Tao,YONG Gao-Chan,ZUO Wei. Effects of Symmetry Energy in the Reaction 40Ca+124Sn at 140 MeV/Nucleon[J]. Chin. Phys. Lett., 2012, 29(5): 092101
[10] ZHANG Fang**,LIU Yang,YONG Gao-Chan,ZUO Wei. Probing Nuclear Symmetry Energy with the Sub-threshold Pion Production[J]. Chin. Phys. Lett., 2012, 29(5): 092101
[11] LI Zeng-Hua, **, ZHANG Da-Peng, SCHULZE Hans-Josef, ZUO Wei. Second-Order Contribution of the Incompressibility in Asymmetric Nuclear Matter[J]. Chin. Phys. Lett., 2012, 29(1): 092101
[12] ZHOU Pei, TIAN Wen-Dong**, MA Yu-Gang**, CAI Xiang-Zhou, FANG De-Qing, WANG Hong-Wei . The influence of Multi-Step Sequential Decay on Isoscaling and Fragment Isospin Distribution in GEMINI Simulation[J]. Chin. Phys. Lett., 2011, 28(6): 092101
[13] BAI Chun-Lin, **, ZHANG HUAN-Qiao, ZHANG Xi-Zhen, XU Fu-Rong, H. Sagawa, G. Colò,. Effect of the Tensor Force on Charge-Exchange Spin-Dependent Multipole Excitations[J]. Chin. Phys. Lett., 2010, 27(10): 092101
[14] Sanjeev Kumar, Suneel Kumar. Systematic Study on System Size Dependence of Global Stopping: Role of Momentum-Dependent Interactions and Symmetry Energy[J]. Chin. Phys. Lett., 2010, 27(6): 092101
[15] JIANG Wei-Zhou, CHEN Yun-Peng, LU Xing. De-excitation Energy of Superdeformed Secondary Minima of Odd-Odd Au Isotopes and Its Sensitivity to the Density Dependence of Symmetry Energy[J]. Chin. Phys. Lett., 2010, 27(3): 092101
Viewed
Full text


Abstract