NUCLEAR PHYSICS |
|
|
|
|
Surface and Volume Symmetry Energy Coefficients of a Neutron-Rich Nucleus |
MA Chun-Wang1**, YANG Ju-Bao1, YU Mian2, PU Jie1,3, WANG Shan-Shan1, WEI Hui-Ling1 |
1Department of Physics, Henan Normal University, Xinxiang 453007 2Department of Life Sciences and Technology, Xinxiang Medical University, Xinxiang 453003 3Department of Nuclear Physics, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 |
|
Cite this article: |
MA Chun-Wang, YANG Ju-Bao, YU Mian et al 2012 Chin. Phys. Lett. 29 092101 |
|
|
Abstract Using an isobaric method, the symmetry-energy coefficient (asym) of a neutron-rich nucleus is obtained from experimental binding energies. The shell effects are shown in asym*/A≡4asym/A of nuclei. A (sub)magic neutron magic number N=40 is suggested in a very neutron-rich nucleus, and asym*/A of a nucleus is found to decrease when its mass increases. The asym*/A of a very neutron-rich nucleus with large mass saturates. The volume-symmetry coefficients (bv) and surface-symmetry coefficients (bs) of a neutron-rich nucleus are extracted from a sym*/A by a correlation asym*/A=bv/A?b s/A4/3. It is found that bv and bs decrease when the nucleus becomes more neutron-rich, and tend to saturate in the very neutron-rich nucleus. A linear correlation between b v and bs is obtained in nuclei with different neutron-excess I, and bv of I>7 nuclei is found to coincide with the results of infinite nuclear matter a sym=32 ±4 MeV, and bs/bv of the nucleus is found to coincide with the results of the finite-range liquid-drop model results.
|
|
Received: 04 May 2012
Published: 01 October 2012
|
|
|
|
|
|
[1] Li B A, Chen L W and Ko C M 2008 Phys. Rep. 464 113[2] Jiang H, Fu G J, Zhao Y M and Arima A 2010 Phys. Rev. C 82 054317[3] Jiang H, Fu G J, Sun B, Liu M, Wang N, Wang M, Ma Y G, Lin C J, Zhao Y M, Zhang Y H, Ren Z Z and Arima A 2012 Phys. Rev. C 85 054303[4] Fu G J, Jiang H, Zhao Y M, Pittel S and Arima A 2010 Phys. Rev. C 82 034304[5] Fu G J, Lei Y, Jiang H, Zhao Y M, Sun B and Arima A 2011 Phys. Rev. C 84 034311[6] Wang N and Liu M2011 Phys. Rev. C 84 051303(R)[7] Wang N, Liu M and Wu X Z2010 Phys. Rev. C 81 044322[8] Liu M, Wang N, Deng Y and Wu X2011 Phys. Rev. C 84 014333[9] Moller P, Myers W D, Sagawa H and Yoshida S2012 Phys. Rev. Lett. 108 052501[10] Goriely S, Chamel N and Pearson J M2010 Phys. Rev. C 82 035804[11] Dong T K and Ren Z Z2008 Phys. Rev. C 77 064310[12] Nikolov N, Schunck N, Nazarewicz W, Bender M and Pei J 2011 Phys. Rev. C 83 034305[13] Stoitsov M, Cakirli R B, Casten R F, Nazarewicz W and Satu?a W 2007 Phys. Rev. Lett. 98 132502[14] Satu? W, Wyss R A and Rafalski M2006 Phys. Rev. C 74 011301(R)[15] Danielewicz P and Lee J 2009 Nucl. Phys. A 818 36[16] Zhang L, Gao Y, Zhang H F, Chen X M, Yu M L and Li J Q 2011 Chin. Phys. Lett. 28 112102[17] Mei H, Huang Y, Yao J M and Chen H 2012 J. Phys. G: Nucl. Part. Phys. 39 015107[18] Jiang H, Fu G J, Zhao Y M and Arima A 2012 Phys. Rev. C 85 024301[19] M?ller P, Nix J R, Myers W D and Swiatecki W J 1995 At. Data Nucl. Data Tables 59 185[20] Liooarini E and Stringari S 1982 Phys. Lett. B 112 421[21] Liu M, Wang N, Li Z X and Zhang F S 2010 Phys. Rev. C 82 064306[22] Huang M, Chen Z, Kowalski S, Ma Y G, Wada R, Keutgen T, Hagel K, Barbui M, Bonasera A, Bottosso C, Materna T, Natowitz J B, Qin L, Rodrigues M R D, Sahu P K and Wang J 2010 Phys. Rev. C 81 044620[23] Ma C W, Wang F, Ma Y G and Jin C 2011 Phys. Rev. C 83 064620[24] Ma C W, Pu J, Wang S S and Wei H L 2012 Chin. Phys. Lett. 29 062101[25] Ma C W, Pu J, Wei H L, Wang S S, Song H L, Zhang S and Chen L 2012 Eur. Phys. J. A 48 78[26] Ma C W, Song H L, Pu J, Zhang T L, Zhang S, Wang S S, Zhao X L and Chen L 2012 Chin. Phys. C (to be published)[27] Weizs?cker C F 1935 Z. Phys. 96 431[28] Bethe H A 1936 Rev. Mod. Phys. 8 82[29] Green A E S and Edwards D F 1953 Phys. Rev. 91 46[30] Audi G, Wapstra A H and Thibault C 2003 Nucl. Phys. A 729 337[31] Nakada H 2010 Phys. Rev. C 81 051302 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|