Chin. Phys. Lett.  2012, Vol. 29 Issue (9): 090501    DOI: 10.1088/0256-307X/29/9/090501
GENERAL |
Non-identical Neural Network Synchronization Study Based on an Adaptive Learning Rule of Synapses
YAN Chuan-Kui1,2, WANG Ru-Bin1**
1Institute for Cognitive Neurodynamics, School of Information Science and Engineering, Department of Mathematics, School of Science, East China University of Science and Technology, Shanghai 200237
2Department of Mathematics, School of Science, Hangzhou Normal University, Hangzhou 310036
Cite this article:   
YAN Chuan-Kui, WANG Ru-Bin 2012 Chin. Phys. Lett. 29 090501
Download: PDF(866KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract An adaptive learning rule of synapses is proposed for a general asymmetric non-identical neural network. Its feasibility is proved by the Lasalle principle. Numerical simulation results show that synaptic connection weight can converge to an appropriate strength and the identical network comes to synchronization. Furthermore, by this approach of learning, a non-identical neural population can still reach synchronization. This means that the learning rule has robustness on mismatch parameters. The firing rhythm of the neural population is totally dependent on topological properties, which promotes our understanding of neuron population activities.
Received: 28 November 2011      Published: 01 October 2012
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
  05.45.Tp (Time series analysis)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/9/090501       OR      https://cpl.iphy.ac.cn/Y2012/V29/I9/090501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
YAN Chuan-Kui
WANG Ru-Bin
[1] Dhamala M, Jirsa V and Ding M 2004 Phys. Rev. Lett. 92 074104
[2] Wang Q Y, Lu Q S, Chen G R and Guo D H 2006 Phys. Lett. A 356 17
[3] Yoshioka M 2005 Phys. Rev. E 71 061914
[4] Bazhenov M, Huerta R, Robinovich M L and Sejnowski T 1998 Physica D 116 392
[5] Belykh I, Lange E D and Hasler M 2005 Phys. Rev. Lett. 94 188101
[6] Allen I S, Mikhail I R, Henry D I A, Robert E, Attila S, Reynaldo D P, Ramón H and Pablo V 2000 J. Physiol. 94 357
[7] Regina M G 1997 J. Exp. Biol. 200 1421
[8] Zheng Y H and Lu Q S 2008 Physica A 387 3719
[9] Wang Q Y, Duan Z S, Perc M et al 2008 Europhys. Lett. 83 50008
[10] Perc M 2007 Phys. Rev. E 76 066203
[11] Fradkov A L, Andrievsky B and Evans R J 2008 IEEE Trans. Circuits I 55 1685
[12] Li C P, Sun W G and Kurths J 2007 Phys. Rev. E 76 046204
[13] Li R, Duan Z S and Chen G R 2008 J. Phys. A: Math. Theor. 41 385103
[14] Lasalle J P 1960 IRE Trans. Circuit Theor. CT-7 520
[15] Bi G Q and Poo M M 1998 J. Neurosci. 18 10464
Related articles from Frontiers Journals
[1] Rui Zhang, Fan Ding, Xujin Yuan, and Mingji Chen. Influence of Spatial Correlation Function on Characteristics of Wideband Electromagnetic Wave Absorbers with Chaotic Surface[J]. Chin. Phys. Lett., 2022, 39(9): 090501
[2] Peng Gao, Zeyu Wu, Zhan-Ying Yang, and Wen-Li Yang. Reverse Rotation of Ring-Shaped Perturbation on Homogeneous Bose–Einstein Condensates[J]. Chin. Phys. Lett., 2021, 38(9): 090501
[3] Jia-Chen Zhang , Wei-Kai Ren , and Ning-De Jin. Rescaled Range Permutation Entropy: A Method for Quantifying the Dynamical Complexity of Extreme Volatility in Chaotic Time Series[J]. Chin. Phys. Lett., 2020, 37(9): 090501
[4] Qianqian Wu, Xingyi Liu, Tengfei Jiao, Surajit Sen, and Decai Huang. Head-on Collision of Solitary Waves Described by the Toda Lattice Model in Granular Chain[J]. Chin. Phys. Lett., 2020, 37(7): 090501
[5] Yun-Cheng Liao, Bin Liu, Juan Liu, Jia Chen. Asymmetric and Single-Side Splitting of Dissipative Solitons in Complex Ginzburg–Landau Equations with an Asymmetric Wedge-Shaped Potential[J]. Chin. Phys. Lett., 2019, 36(1): 090501
[6] Ying Du, Jiaqi Liu, Shihui Fu. Information Transmitting and Cognition with a Spiking Neural Network Model[J]. Chin. Phys. Lett., 2018, 35(9): 090501
[7] Quan-Bao Ji, Zhuo-Qin Yang, Fang Han. Bifurcation Analysis and Transition Mechanism in a Modified Model of Ca$^{2+}$ Oscillations[J]. Chin. Phys. Lett., 2017, 34(8): 090501
[8] Ya-Tong Zhou, Yu Fan, Zi-Yi Chen, Jian-Cheng Sun. Multimodality Prediction of Chaotic Time Series with Sparse Hard-Cut EM Learning of the Gaussian Process Mixture Model[J]. Chin. Phys. Lett., 2017, 34(5): 090501
[9] Jing-Hui Li. Effect of Network Size on Collective Motion of Mean Field for a Globally Coupled Map with Disorder[J]. Chin. Phys. Lett., 2016, 33(12): 090501
[10] Jian-Cheng Sun. Complex Networks from Chaotic Time Series on Riemannian Manifold[J]. Chin. Phys. Lett., 2016, 33(10): 090501
[11] HUANG Feng, CHEN Han-Shuang, SHEN Chuan-Sheng. Phase Transitions of Majority-Vote Model on Modular Networks[J]. Chin. Phys. Lett., 2015, 32(11): 090501
[12] WANG Yu-Xin, ZHAI Ji-Quan, XU Wei-Wei, SUN Guo-Zhu, WU Pei-Heng. A New Quantity to Characterize Stochastic Resonance[J]. Chin. Phys. Lett., 2015, 32(09): 090501
[13] JI Quan-Bao, ZHOU Yi, YANG Zhuo-Qin, MENG Xiang-Ying. Bifurcation Scenarios of a Modified Mathematical Model for Intracellular Ca2+ Oscillations[J]. Chin. Phys. Lett., 2015, 32(5): 090501
[14] HAN Fang, WANG Zhi-Jie, FAN Hong, GONG Tao. Robust Synchronization in an E/I Network with Medium Synaptic Delay and High Level of Heterogeneity[J]. Chin. Phys. Lett., 2015, 32(4): 090501
[15] ZHAI Ji-Quan, LI Yong-Chao, SHI Jian-Xin, ZHOU Yu, LI Xiao-Hu, XU Wei-Wei, SUN Guo-Zhu, WU Pei-Heng. Dependence of Switching Current Distribution of a Current-Biased Josephson Junction on Microwave Frequency[J]. Chin. Phys. Lett., 2015, 32(4): 090501
Viewed
Full text


Abstract