Chin. Phys. Lett.  2012, Vol. 29 Issue (9): 090302    DOI: 10.1088/0256-307X/29/9/090302
GENERAL |
Bound State Solutions of the Schr?dinger Equation for a More General Woods–Saxon Potential with Arbitrary l-State
Akpan N. Ikot1**, Ita O. Akpan2
1Theoretical Physics Group, Department of Physics, University of Uyo, Nigeria
2Department of Physics, University of Calabar, Nigeria
Cite this article:   
Akpan N. Ikot, Ita O. Akpan 2012 Chin. Phys. Lett. 29 090302
Download: PDF(401KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The energy spectra and the wave function depending on the c-factor are investigated for a more general Woods–Saxon potential (MGWSP) with an arbitrary l-state. The wave functions are expressed in terms of the Jacobi polynomials. Two potentials are obtained from this MGWSP as the special cases. These special potentials are Hulthen and the standard Woods–Saxon potentials. We also discuss the energy spectrum and wave function for the special cases.
Received: 25 May 2012      Published: 01 October 2012
PACS:  03.65.Ge (Solutions of wave equations: bound states)  
  03.65.-w (Quantum mechanics)  
  03.65.Fd (Algebraic methods)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/9/090302       OR      https://cpl.iphy.ac.cn/Y2012/V29/I9/090302
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Akpan N. Ikot
Ita O. Akpan
[1] Ikot A N and Akpabio L E 2010 Appl. Phys. Res. 2 202
[2] Ikot A N, Akpabio L E and Obu J A 2011 J. Vectorial Relativ. 6 1
[3] Meyur S and Debnath S 2009 Bulg. J. Phys. 36 77
[4] Antia A D, Ikot A N and Akpabio L E 2010 Eur. J. Sci. Res. 46 107
[5] Ahmed S A S and Buragohan L 2010 Bulg. J. Phys. 37 133
[6] Ikot A N, Akpabio L E and Umoren E B 2011 J. Sci. Res. 3 25
[7] Bayrak O and Boztosun I 2006 J. Phys. A: Math. Gen. 39 6955
[8] Cooper F, Khare A and Sukhatme U 1995 Phys. Rep. 251 267
[9] Pekeris C I 1934 Phys. Rev. 45 98
[10] Nikiforov A F and Uvarov V B 1988 Special Functions of Mathematical Physics (Basel: Birkhauser)
[11] Levai G and Williams B W 1993 J. Phys. A: Math. Gen. 26 3301
[12] Woods R D and Saxon D S 1954 Phys. Rev. 95 577
[13] Flugge S 1994 Practical Quantum Mechanics (Berlin: Springer) vol 1
[14] Badalov V B H, Ahmadov H I and Ahmadov A I 2009 Int. J. Mod. Phys. E 18 631
[15] Ikhdair S M and Sever R 2008 Int. J. Mod. Phys. E 17 1107
[16] Berkdemir C, Berkdemir A and Sever R 2005 Phys. Rev. C 72 027001
[17] Janvicius A J and Jurgaitis D 2007 Siauliai Math. Semin. 2 5
[18] Xu Y, He S and Jia C S 2008 J. Phys. A 41 255302
[19] Ikot A N, Akpabio L E and Uwah E J 2011 Electron. J. Theor. Phys. 8 225
[20] Ikhdair S M 2005 arXiv:quant-ph/0507272
[21] Berkdemir A, Berkdemir C and Sever R 2006 Mod. Phys. Lett. A 21 2087
[22] Bohr A and Mottelson B R 1969 Nuclear Structure (New York: Benjamin/Cummuning)
Related articles from Frontiers Journals
[1] Bo-Xing Cao  and Fu-Lin Zhang. The Analytic Eigenvalue Structure of the 1+1 Dirac Oscillator[J]. Chin. Phys. Lett., 2020, 37(9): 090302
[2] R. C. Woods. Comments on “Non-Relativistic Treatment of a Generalized Inverse Quadratic Yukawa Potential” [Chin. Phys. Lett. 34 (2017) 110301][J]. Chin. Phys. Lett., 2020, 37(8): 090302
[3] Wei Qi, Zi-Hao Li, Zhao-Xin Liang. Modulational Instability of Dipolar Bose–Einstein Condensates in Optical Lattices with Three-Body Interactions[J]. Chin. Phys. Lett., 2018, 35(1): 090302
[4] Hong-Hua Zhong, Zheng Zhou, Bo Zhu, Yong-Guan Ke, Chao-Hong Lee. Floquet Bound States in a Driven Two-Particle Bose–Hubbard Model with an Impurity[J]. Chin. Phys. Lett., 2017, 34(7): 090302
[5] Muhammad Adeel Ajaib. Hydrogen Atom and Equivalent Form of the Lévy-Leblond Equation[J]. Chin. Phys. Lett., 2017, 34(5): 090302
[6] Kang-Kang Ju, Cui-Xian Guo, Xiao-Yin Pan. Initial-Slip Term Effects on the Dissipation-Induced Transition of a Simple Harmonic Oscillator[J]. Chin. Phys. Lett., 2017, 34(1): 090302
[7] K. T. Chan, H. Zainuddin, K. A. M. Atan, A. A. Siddig. Computing Quantum Bound States on Triply Punctured Two-Sphere Surface[J]. Chin. Phys. Lett., 2016, 33(09): 090302
[8] Jie Gao, Min-Cang Zhang. Analytical Solutions to the $D$-Dimensional Schr?dinger Equation with the Eckart Potential[J]. Chin. Phys. Lett., 2016, 33(01): 090302
[9] LAI Meng-Yun, XIAO Duan-Liang, PAN Xiao-Yin. The Harmonic Potential Theorem for a Quantum System with Time-Dependent Effective Mass[J]. Chin. Phys. Lett., 2015, 32(11): 090302
[10] Diwaker, Aniruddha Chakraborty. Transfer Matrix Approach for Two-State Scattering Problem with Arbitrary Coupling[J]. Chin. Phys. Lett., 2015, 32(07): 090302
[11] ALSADI Khalid S. Eigen Spectra of the Dirac Equation for Deformed Woods–Saxon Potential via the Similarity Transformation[J]. Chin. Phys. Lett., 2014, 31(12): 090302
[12] ZHANG Min-Cang. Analytical Arbitrary-Wave Solutions of the Deformed Hyperbolic Eckart Potential by the Nikiforov–Uvarov Method[J]. Chin. Phys. Lett., 2013, 30(11): 090302
[13] QI Wei, LIANG Zhao-Xin, ZHANG Zhi-Dong. Collective Excitations of a Dipolar Bose–Einstein Condensate in an Anharmonic Trap[J]. Chin. Phys. Lett., 2013, 30(6): 090302
[14] CHEN Jin-Wang, YANG Tao, PAN Xiao-Yin. A New Proof for the Harmonic-Potential Theorem[J]. Chin. Phys. Lett., 2013, 30(2): 090302
[15] Sameer M. Ikhdair, Babatunde J. Falaye, Majid Hamzavi. Approximate Eigensolutions of the Deformed Woods–Saxon Potential via AIM[J]. Chin. Phys. Lett., 2013, 30(2): 090302
Viewed
Full text


Abstract