Chin. Phys. Lett.  2012, Vol. 29 Issue (9): 090301    DOI: 10.1088/0256-307X/29/9/090301
GENERAL |
The s-Ordered Fock Space Projectors Gained by the General Ordering Theorem
Farid Shähandeh**, Mohammad Reza Bazrafkan, Mahmoud Ashrafi
Department of Physics, Faculty of Science, I. K. I. University, Qazvin, Iran
Cite this article:   
Farid Sh?handeh, Mohammad Reza Bazrafkan, Mahmoud Ashrafi 2012 Chin. Phys. Lett. 29 090301
Download: PDF(402KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Employing the general ordering theorem (GOT), operational methods and incomplete 2-D Hermite polynomials, we derive the t-ordered expansion of Fock space projectors. Using the result, the general ordered form of the coherent state projectors is obtained. This indeed gives a new integration formula regarding incomplete 2-D Hermite polynomials. In addition, the orthogonality relation of the incomplete 2-D Hermite polynomials is derived to resolve Dattoli's failure.
Received: 18 May 2012      Published: 01 October 2012
PACS:  03.65.-w (Quantum mechanics)  
  42.50.-p (Quantum optics)  
  31.15.-p (Calculations and mathematical techniques in atomic and molecular physics)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/9/090301       OR      https://cpl.iphy.ac.cn/Y2012/V29/I9/090301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Farid Sh?handeh
Mohammad Reza Bazrafkan
Mahmoud Ashrafi
[1] Schleich W P 2001 Quantum Optics in Phase Space (Berlin: Wiley-VCH Verlag)
[2] Glauber R J 2007 Quantum Theory of Optical Coherence (Wiley-VCH Verlag GmbH & Co. KGaA)
Cahill K E and Glauber R J 1969 Phys. Rev. 177 1857
Cahill K E and Glauber R J 1969 Phys. Rev. 177 1882
[3] Fan H Y, Yuan H C and Hu L Y 2010 Chin. Phys. B 19 104204
[4] Sh?handeh F and Bazrafkan M R 2012 J. Phys. A: Math. Theor. 45 155204
[5] Wünsche A 1999 J. Opt. B: Quantum Semiclass. Opt. 1 264
[6] Dattoli G 2003 J. Math. Anal. Appl. 284 447
[7] Wünsche A 2001 J. Comput. Appl. Math. 133 665
[8] Bayin S S 2006 Mathematical Methods In Science and Engineering (New Jersey: John Wiley & Sons, Inc.)
[9] Wilf H S 2006 Generating functionology (Massachusetts: A K Peters, Ltd.)
[10] Louisell W H 1990 Quantum Statistical Properties of Radiation (New York: Wiley)
[11] Sh?handeh F, Bazrafkan M R and Nahvifard E 2012 Chin. Phys. B (accepted)
[12] Yu Z S, Ren G H, Fan H Y, Cai G C and Jiang N Q 2012 Int. J. Theor. Phys. 51 2256
[13] Fan H Y 2010 Chin. Phys. B 19 050303
Related articles from Frontiers Journals
[1] Ji-Ze Xu, Li-Na Sun, J.-F. Wei, Y.-L. Du, Ronghui Luo, Lei-Lei Yan, M. Feng, and Shi-Lei Su. Two-Qubit Geometric Gates Based on Ground-State Blockade of Rydberg Atoms[J]. Chin. Phys. Lett., 2022, 39(9): 090301
[2] Haodong Wang, Peihan Lei, Xiaoyu Mao, Xi Kong, Xiangyu Ye, Pengfei Wang, Ya Wang, Xi Qin, Jan Meijer, Hualing Zeng, Fazhan Shi, and Jiangfeng Du. Magnetic Phase Transition in Two-Dimensional CrBr$_3$ Probed by a Quantum Sensor[J]. Chin. Phys. Lett., 2022, 39(4): 090301
[3] L. Jin. Unitary Scattering Protected by Pseudo-Hermiticity[J]. Chin. Phys. Lett., 2022, 39(3): 090301
[4] X. M. Yang , L. Jin, and Z. Song. Topological Knots in Quantum Spin Systems[J]. Chin. Phys. Lett., 2021, 38(6): 090301
[5] L. Jin and Z. Song. Symmetry-Protected Scattering in Non-Hermitian Linear Systems[J]. Chin. Phys. Lett., 2021, 38(2): 090301
[6] Anqi Shi , Haoyu Guan , Jun Zhang , and Wenxian Zhang. Long-Range Interaction Enhanced Adiabatic Quantum Computers[J]. Chin. Phys. Lett., 2020, 37(12): 090301
[7] Peiran Yin, Xiaohui Luo, Liang Zhang, Shaochun Lin, Tian Tian, Rui Li, Zizhe Wang, Changkui Duan, Pu Huang, and Jiangfeng Du. Chiral State Conversion in a Levitated Micromechanical Oscillator with ${\boldsymbol In~Situ}$ Control of Parameter Loops[J]. Chin. Phys. Lett., 2020, 37(10): 090301
[8] Bo-Xing Cao  and Fu-Lin Zhang. The Analytic Eigenvalue Structure of the 1+1 Dirac Oscillator[J]. Chin. Phys. Lett., 2020, 37(9): 090301
[9] R. C. Woods. Comments on “Non-Relativistic Treatment of a Generalized Inverse Quadratic Yukawa Potential” [Chin. Phys. Lett. 34 (2017) 110301][J]. Chin. Phys. Lett., 2020, 37(8): 090301
[10] Gui-Hao Jia, Yu Xu, Xiao Kong, Cui-Xian Guo, Si-Lei Liu, Su-Peng Kou. Emergent Quantum Dynamics of Vortex-Line under Linear Local Induction Approximation[J]. Chin. Phys. Lett., 2019, 36(12): 090301
[11] Ming Zhang, Zairong Xi, Tzyh-Jong Tarn. Robust Set Stabilization and Its Instances for Open Quantum Systems[J]. Chin. Phys. Lett., 2018, 35(9): 090301
[12] Lei Du, Zhihao Xu, Chuanhao Yin, Liping Guo. Dynamical Evolution of an Effective Two-Level System with $\mathcal{PT}$ Symmetry[J]. Chin. Phys. Lett., 2018, 35(5): 090301
[13] Xin Zhao, Bo-Yang Liu, Ying Yi, Hong-Yi Dai, Ming Zhang. Impact of Distribution Fairness Degree and Entanglement Degree on Cooperation[J]. Chin. Phys. Lett., 2018, 35(3): 090301
[14] F. Safari, H. Jafari, J. Sadeghi, S. J. Johnston, D. Baleanu. Stability of Dirac Equation in Four-Dimensional Gravity[J]. Chin. Phys. Lett., 2017, 34(6): 090301
[15] Muhammad Adeel Ajaib. Hydrogen Atom and Equivalent Form of the Lévy-Leblond Equation[J]. Chin. Phys. Lett., 2017, 34(5): 090301
Viewed
Full text


Abstract