Chin. Phys. Lett.  2012, Vol. 29 Issue (9): 090201    DOI: 10.1088/0256-307X/29/9/090201
GENERAL |
Infinite Conservation Laws for Nonlinear Integrable Couplings of Toda Hierarchy
YU Fa-Jun**
School of Mathematics and Systematic Sciences, Shenyang Normal University, Shenyang 110034
Cite this article:   
Download: PDF(372KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We construct nonlinear integrable couplings of discrete soliton hierarchy, then the infinite conservation laws for the nonlinear integrable couplings of the lattice hierarchy are established. For explicit application of the method proposed, the infinite conservation laws of nonlinear integrable couplings of the Toda lattice hierarchy are presented. The obtained integrable couplings of the Toda lattice equations and conservation laws can be used to describe the possible formation mechanisms for hydrodynamics, solid state physics and plasma physics, respectively.

Received: 21 February 2012      Published: 01 October 2012
PACS:  02.30.Ik (Integrable systems)  
  02.30.Jr (Partial differential equations)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/9/090201       OR      https://cpl.iphy.ac.cn/Y2012/V29/I9/090201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
[1] Miura R M, Gardner C S and Kruskal M D 1968 J. Math. Phys. 9 1204
[2] Wadati M, Sanuki H and Konno K 1975 Prog. Theor. Phys. 53 419
[3] Zakharov V and Shabat A 1972 Sov. Phys. JETP. 34 62
[4] Konno K, Sanuki H, Ichikawa Y H 1974 Prog. Theor. Phys. 52 886
[5] Kajiwara K, Matsukidaira J 1990 J. Satsuma Phys. Lett. A 146 115
[6] Tsuchida T, Wadati M 1998 J. Phys. Soc. Jpn. 67 1175
[7] Zhang D J, Chen D Y 2002 Chaos Solitons Fractals 14 573
[8] Zhu Z N et al 2002 J. Phys. A: Math Gen. 35 5079
[9] Ma W X, Fuchssteiner B 1996 Chaos Solitons Fractals 7 1227
[10] Ma W X 1992 Chin. J. Cont. Math. 13 79
[11] Guo F K and Zhang Y F 2003 J. Math. Phys. 44 5793
[12] Zhang Y F, Fan E G and Tam H 2006 Phys. Lett. A 359 471
[13] Xia T C, You F C 2007 Chin. Phys. 16 605
[14] Ma W X 2003 Phys. Lett. A 316 72
[15] Fan E G 2000 J. Math. Phys. 41 (11) 7769
[16] Ma W X, Xu X X and Zhang Y F 2006 J. Math. Phys. 47 053501
[17] Ma W X, Xu X X and Zhang Y F 2006 Phys. Lett. A 351 125
[18] Zhang Y F and Zhang H Q 2002 J. Math. Phys. 43 466
[19] Yu F J and Zhang H Q 2006 Phys. Lett. A 353 326
[20] Ma W X 2012 Chin. Annu. Math. B 33 207
[21] Ma W X 2007 J. Phys. A: Gen. Math. 40 15055
[22] Ma W X and Zhu Z N 2010 Comput. Math. Appl. 60 2601
Related articles from Frontiers Journals
[1] S. Y. Lou, Man Jia, and Xia-Zhi Hao. Higher Dimensional Camassa–Holm Equations[J]. Chin. Phys. Lett., 2023, 40(2): 090201
[2] Wen-Xiu Ma. Matrix Integrable Fourth-Order Nonlinear Schr?dinger Equations and Their Exact Soliton Solutions[J]. Chin. Phys. Lett., 2022, 39(10): 090201
[3] Chong Liu, Shao-Chun Chen, Xiankun Yao, and Nail Akhmediev. Modulation Instability and Non-Degenerate Akhmediev Breathers of Manakov Equations[J]. Chin. Phys. Lett., 2022, 39(9): 090201
[4] Xiao-Man Zhang, Yan-Hong Qin, Li-Ming Ling, and Li-Chen Zhao. Inelastic Interaction of Double-Valley Dark Solitons for the Hirota Equation[J]. Chin. Phys. Lett., 2021, 38(9): 090201
[5] Kai-Hua Yin, Xue-Ping Cheng, and Ji Lin. Soliton Molecule and Breather-Soliton Molecule Structures for a General Sixth-Order Nonlinear Equation[J]. Chin. Phys. Lett., 2021, 38(8): 090201
[6] Yusong Cao and Junpeng Cao. Exact Solution of a Non-Hermitian Generalized Rabi Model[J]. Chin. Phys. Lett., 2021, 38(8): 090201
[7] Zequn Qi , Zhao Zhang , and Biao Li. Space-Curved Resonant Line Solitons in a Generalized $(2+1)$-Dimensional Fifth-Order KdV System[J]. Chin. Phys. Lett., 2021, 38(6): 090201
[8] Wei Wang, Ruoxia Yao, and Senyue Lou. Abundant Traveling Wave Structures of (1+1)-Dimensional Sawada–Kotera Equation: Few Cycle Solitons and Soliton Molecules[J]. Chin. Phys. Lett., 2020, 37(10): 090201
[9] Li-Chen Zhao, Yan-Hong Qin, Wen-Long Wang, Zhan-Ying Yang. A Direct Derivation of the Dark Soliton Excitation Energy[J]. Chin. Phys. Lett., 2020, 37(5): 090201
[10] Danda Zhang, Da-Jun Zhang, Sen-Yue Lou. Lax Pairs of Integrable Systems in Bidifferential Graded Algebras[J]. Chin. Phys. Lett., 2020, 37(4): 090201
[11] Yu-Han Wu, Chong Liu, Zhan-Ying Yang, Wen-Li Yang. Breather Interaction Properties Induced by Self-Steepening and Space-Time Correction[J]. Chin. Phys. Lett., 2020, 37(4): 090201
[12] Bao Wang, Zhao Zhang, Biao Li. Soliton Molecules and Some Hybrid Solutions for the Nonlinear Schr?dinger Equation[J]. Chin. Phys. Lett., 2020, 37(3): 090201
[13] Zhao Zhang, Shu-Xin Yang, Biao Li. Soliton Molecules, Asymmetric Solitons and Hybrid Solutions for (2+1)-Dimensional Fifth-Order KdV Equation[J]. Chin. Phys. Lett., 2019, 36(12): 090201
[14] Zhou-Zheng Kang, Tie-Cheng Xia. Construction of Multi-soliton Solutions of the $N$-Coupled Hirota Equations in an Optical Fiber[J]. Chin. Phys. Lett., 2019, 36(11): 090201
[15] Yong-Shuai Zhang, Jing-Song He. Bound-State Soliton Solutions of the Nonlinear Schr?dinger Equation and Their Asymmetric Decompositions[J]. Chin. Phys. Lett., 2019, 36(3): 090201
Viewed
Full text


Abstract