CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
|
|
|
|
Interaction between a Functionalized Single-Walled Carbon Nanotube and the YAP65WW Protein Domain: a Molecular Dynamics Simulation Study |
DOU Quan-Tao1, ZUO Guang-Hong 2, FANG Hai-Ping1,2** |
1T-Life Research Center, Department of Physics, Fudan University, Shanghai 200433 2Shanghai Institute of Applied Physics, Chinese Academy of Sciences, P.O. Box 800-204, Shanghai 201800 |
|
Cite this article: |
DOU Quan-Tao, ZUO Guang-Hong, FANG Hai-Ping 2012 Chin. Phys. Lett. 29 068701 |
|
|
Abstract The interaction between a functionalized single-walled carbon nanotube (f-SWCNT) and the YAP65WW protein domain is investigated by using molecular dynamics simulations. It is found that the f-SWCNT binds onto the active site of the YAP65WW domain and leads to a substantial conformational change of the protein domain, which may securely affect the original function of protein. Both the hydrophobic interaction and the long lifetime hydrogen bonds play important roles in the binding.
|
|
Received: 06 February 2012
Published: 31 May 2012
|
|
PACS: |
87.15.H-
|
(Dynamics of biomolecules)
|
|
87.15.K-
|
(Molecular interactions; membrane-protein interactions)
|
|
87.64.Aa
|
(Computer simulation)
|
|
|
|
|
[1] Shim M, Kam N W S, Robert J, Chen R J, Li Y M and Dai H J 2002 Nano. Lett. 2 285 [2] Prato M, Kostarelos K and Bianco A 2008 Acc. Chem. Res. 41 60 [3] Hafner C L, Cheung C L, Woolley A T and Lieber C M 2001 Prog. Biophys. Mol. Biol. 77 73 [4] Karajanagi S S, Vertegel A A, Kane R S and Dordick J S 2004 Langmuir 20 11594 [5] Matsuura K, Saito T, Okazaki T, Ohshima S, Yumura M and Iijima S 2006 Chem. Phys. Lett. 429 497 [6] Goldberg-Oppenheimer P and Regev O 2007 Small 3 1894 [7] Shen J W, Wu T, Wang Q and Kang Y 2008 Biomaterials 29 3847 [8] Zuo G H, Huang Q, Wei G H, Zhou R H and Fang H P 2010 ACS Nano. 4 7508 [9] Zuo G H, Gu W, Fang H P and Zhou R H 2011 J. Phys. Chem. C 115 12322 [10] Ge C C, Du J F, Zhao L N, Wang L M, Liu Y, Li D H, Yang Y L, Zhou R H, Zhao Y L, Chai Z F and Chen C Y 2011 Proc. Natl. Acad. Sci. U.S.A. 108 16968 [11] Li H Y, Luo Y, Derreumaux P and Wei G H 2011 Biophys. J. 101 2267 [12] Huang W J, Taylor S, Fu K, Lin Y, Zhang D H, Hanks T W, Rao A M and Sun Y P 2002 Nano. Lett. 2 311 [13] Zhang Y B, Kanungo M, Ho A J, Freimuth P, Lelie D, Chen M, Khamis S M, Datta S S, Johnson A T C, Misewich J A and Wong S S 2007 Nano. Lett. 7 3086 [14] Imasaka K, Suehiro J, Kanatake Y, Kato Y and Hara M 2006 Nanotechnology 17 3421 [15] Zhang B, Xing Y H, Li Z W, Zhou H Y, Mu Q X and Yan B 2009 Nano. Lett. 9 2280 [16] Feng W, Xiao J, Li L L and Ji P 2011 Ind. Eng. Chem. Res 50 11608 [17] Macias M J, Hyvonen M, Baraldi E, Schultz J, Sudol M, Saraste M and Oschkinat H 1996 Nature 382 646 [18] Duan Y, Wu C, Chowdhury S, Lee M C, Xiong G M, Zhang W, Yang R, Cieplak P, Luo R, Lee T S, Caldwell J, Wang J M and Kollman P 2003 J. Comput. Chem. 24 1999 [19] Gong X J, Li J Y, Lu H J, Wan R Z, Li J C, Hu J and Fang H P 2007 Nat. Nano. 2 709 [20] Hummer G, Rasaiah J C and Noworyta J P 2001 Nature 414 188 [21] Jorgensen W L, Chandrasekhar J, Madura J D, Impey R W and Klein M L 1983 J. Chem. Phys. 79 926 [22] Hess B, Kutzner C, van der Spoel D and Lindahl E 2008 J. Chem. Theory Comput. 4 435 [23] Hess B, Bekker H, Berendsen H J C and Fraaije J G E M 1997 J. Comp. Chem 18 1463 [24] Darden T, York D and Pedersen L 1993 J. Chem. Phys. 98 10089 [25] Essmann U, Perera L, Berkowitz M L, Darden T, Lee H and Pedersen L G 1995 J. Chem. Phys. 103 8577 [26] Berendsen H J C, Postma J P M, Vangunsteren W F, Dinola A and Haak J R 1984 J. Chem. Phys. 81 3684 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|