CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Impact of Interfacial Trap Density of States on the Stability of Amorphous InGaZnO-Based Thin-Film Transistors |
HUANG Xiao-Ming1, WU Chen-Fei1, LU Hai1**, XU Qing-Yu2, ZHANG Rong1, ZHENG You-Dou1 |
1Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials, and School of Electronic Science and Engineering, Nanjing University, Nanjing 210093 2Department of Physics, Southeast University, Nanjing 211189 |
|
Cite this article: |
HUANG Xiao-Ming, WU Chen-Fei, LU Hai et al 2012 Chin. Phys. Lett. 29 067302 |
|
|
Abstract The impact of interfacial trap states on the stability of amorphous indium-gallium-zinc oxide thin film transistors is studied under positive gate bias stress. With increasing stress time, the device exhibits a large positive drift of threshold voltage while maintaining a stable sub-threshold swing and a constant field-effect mobility of channel electrons. The threshold voltage drift is explained by charge trapping at the high-density trap states near the channel/dielectric interface, which is confirmed by photo-excited charge-collection spectroscopy measurement.
|
|
Received: 26 December 2011
Published: 31 May 2012
|
|
PACS: |
73.61.Jc
|
(Amorphous semiconductors; glasses)
|
|
73.40.Qv
|
(Metal-insulator-semiconductor structures (including semiconductor-to-insulator))
|
|
73.20.At
|
(Surface states, band structure, electron density of states)
|
|
|
|
|
[1] Lee J, Park J S, Pyo Y S, Lee D B, Kim E H, Stryakhilev D, Kim T W, Jin D U and Mo Y G 2009 Appl. Phys. Lett. 95 123502 [2] Jeong J K, Yang H W, Jeong J H, Mo Y G and Kin H D 2008 Appl. Phys. Lett. 93 123508 [3] Chen T C, Chang T C, Tsai C T, Hsieh T Y, Chen S C, Lin C S, Hung M C, Tu C H, Chang J J and Chen P L 2010 Appl. Phys. Lett. 97 112104 [4] Suresh A and Muth J F 2008 Appl. Phys. Lett. 92 033502 [5] Kim B, Chong E, Kim D H, Jeon Y W, Kim D H and Lee S Y 2011 Appl. Phys. Lett. 99 062108 [6] Cross R B M and Souza M M D 2006 Appl. Phys. Lett. 89 263513 [7] Tsao S W, Chang T C, Huang S Y, Chen M C, Chen S C, Tsai C T, Kuo Y J, Chen Y C and Wu W C 2010 Solid-State Electron. 54 1497 [8] B 鴕seth T M, Svensson B G, Kuznetsov A Y, Klason P, Zhao Q X and Willander M 2006 Appl. Phys. Lett. 89 262112 [9] Wang R S, Gu Q L, Ling C C and Ong H C 2008 Appl. Phys. Lett. 92 042105 [10] Frenzel H, Wenckstern H V, Weber A, Schmidt H, Biehne G, Hochmuth H, Lorenz M and Grundmann M 2007 Phys. Rev. B 76 035214 [11] Goldmann C, Krellner C, Pernstich K P, Haas S, Gundlach D J and Batlogg B 2006 J. Appl. Phys. 99 034507 [12] Lee K, Oh M S, Mun S J, Lee K H, Ha T W, Kim J H, Ko Park S H, Hwang C S, Lee B H, Sung M M and Im S 2010 Adv. Mater. 22 3260 [13] Gorrn P, Holzer P, Riedl T, Kowalsky W, Wang J, Weimann T, Hinze P and Kipp S 2007 Appl. Phys. Lett. 90 063502 [14] Vygranenko Y, Wang K and Nathan A 2007 Appl. Phys. Lett. 91 263508 [15] Chang Y G, Kim D H, Ko G, Lee K, Kim J H and Im S 2011 IEEE Electron Device Lett. 32 336 [16] Chiu C J, Chang S P and Chang S J 2010 IEEE Electron Device Lett. 31 1245 [17] Janotti A and de Walle C G V 2007 Phys. Rev. B 76 165202 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|