Chin. Phys. Lett.  2012, Vol. 29 Issue (6): 067301    DOI: 10.1088/0256-307X/29/6/067301
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Numerical Analysis of Efficiency Enhancement in Plasmonic Thin-Film Solar Cells by Using the SILVACO TCAD Simulator
KIM Un-Chol1**, JIANG Xiao-Qing2
1Department of Materials Science, Kim Il Song University, Pyongyang, D. P. R. Korea
2Department of Information Science & Electronic Engineering, Zhejiang University, Hangzhou 310027
Cite this article:   
KIM Un-Chol, JIANG Xiao-Qing 2012 Chin. Phys. Lett. 29 067301
Download: PDF(1105KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A physical model for simulating plasmonic solar cells (SCs) using the SILVACO TCAD simulator is established and the effects of some factors on the efficiency enhancement of the amorphous silicon thin film SCs are simulated. Through this simulation, it is demonstrated that our method can successfully simulate the optical and electrical properties of plasmonic solar cells without the overestimation of the characteristics and without the neglect of parameter change in the device operation process. It is shown that not only the size and kind of metal nanoparticles but also other factors, such as the surrounding medium, the distance from the bottom of particles to the device surface, and the light incident angle, play important roles in the optical and electrical properties of plasmonic SCs.
Received: 16 March 2012      Published: 31 May 2012
PACS:  73.20.Mf (Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))  
  88.40.jj (Silicon solar cells)  
  02.60.-x (Numerical approximation and analysis)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/6/067301       OR      https://cpl.iphy.ac.cn/Y2012/V29/I6/067301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
KIM Un-Chol
JIANG Xiao-Qing
[1] R Zia, M D Selker, P B Catrysse and M L Brongersma 2004 J. Opt. Soc. Am. A 21 24422446
[2] J Homola, S S Yee and G Gauglitz 1999 Sens. Actuator B 54 315
[3] K L Chopra, P D Paulson and V Dutta 2004 Prog. Photovoltaics 12 6992
[4] A G Aberle 2006 J. Cryst. Growth 287 386
[5] Gusak V, Kasemo B and H?gglund C 2011 ACS Nano 5 6218
[6] Akimov Y A and Koh W S 2011 Appl. Phys. Lett. 99 063102
[7] Yu E T, Derkacs D, Lim S H, Matheu P and Schaadt D M 2008 Proc. SPIE 7033 70331V
[8] Derkacs D, Lim S H, Matheu P, Mar W and Yu E T 2006 Appl. Phys. Lett. 89 093103
[9] Bai Y M, Wang J, Chen N F et al 2011 Chin. Phys. Lett. 28 087306
[10] Tsai F J et al 2010 Opt. Express 18 A207
[11] Sha W E I, Choy W C H and Chew W C 2010 Opt. Express 18 5993
[12] Li X, Hylton N P et al 2011 Opt. Express 19 A888
[13] Pesic I 2012 Atlas User's ManualDevice Simulation Software (Santa Clara: SILVACO. Inc.)
[14] Kr? J, Zeman M, Smole F and Topi? M 2002 J. Appl. Phys. 92 749
Related articles from Frontiers Journals
[1] Qirui Cui, Jinghua Liang, Yingmei Zhu, Xiong Yao, and Hongxin Yang. Quantum Anomalous Hall Effects Controlled by Chiral Domain Walls[J]. Chin. Phys. Lett., 2023, 40(3): 067301
[2] Xiang Xiong, Zhao-Yuan Zeng, Ruwen Peng, and Mu Wang. Directional Chiral Optical Emission by Electron-Beam-Excited Nano-Antenna[J]. Chin. Phys. Lett., 2023, 40(1): 067301
[3] Lili Zhao, Wenlu Lin, Y. J. Chung, K. W. Baldwin, L. N. Pfeiffer, and Yang Liu. Finite Capacitive Response at the Quantum Hall Plateau[J]. Chin. Phys. Lett., 2022, 39(9): 067301
[4] Yuan-Fang Yu, Ye Zhang, Fan Zhong, Lin Bai, Hui Liu, Jun-Peng Lu, and Zhen-Hua Ni. Highly Sensitive Mid-Infrared Photodetector Enabled by Plasmonic Hot Carriers in the First Atmospheric Window[J]. Chin. Phys. Lett., 2022, 39(5): 067301
[5] Gongzheng Chen, Jin Lan, Tai Min, and Jiang Xiao. Narrow Waveguide Based on Ferroelectric Domain Wall[J]. Chin. Phys. Lett., 2021, 38(8): 067301
[6] Yun-Fei Zou and Li Yu. Lower Exciton Number Strong Light Matter Interaction in Plasmonic Tweezers[J]. Chin. Phys. Lett., 2021, 38(2): 067301
[7] Jiancai Xue , Limin Lin , Zhang-Kai Zhou, and Xue-Hua Wang . Semi-Ellipsoid Nanoarray for Angle-Independent Plasmonic Color Printing[J]. Chin. Phys. Lett., 2020, 37(11): 067301
[8] Ping Jiang, Chao Li, Yuan-Yuan Chen, Gang Song, Yi-Lin Wang, Li Yu. Strong Exciton-Plasmon Coupling and Hybridization of Organic-Inorganic Exciton-Polaritons in Plasmonic Nanocavity[J]. Chin. Phys. Lett., 2019, 36(10): 067301
[9] Binbin Liu, Pujuan Ma, Wenjing Yu, Yadong Xu, Lei Gao. Tunable Bistability in the Goos–H?nchen Effect with Nonlinear Graphene[J]. Chin. Phys. Lett., 2019, 36(6): 067301
[10] Peng Sun, Wei-Wei Yu, Xiao-Hang Pan, Wei Wei, Yan Sun, Ning-Yi Yuan, Jian-Ning Ding, Wen-Chao Zhao, Xin Chen, Ning Dai. Fluorescence Enhancement of Metal-Capped Perovskite CH$_{3}$NH$_{3}$PbI$_{3}$ Thin Films[J]. Chin. Phys. Lett., 2017, 34(9): 067301
[11] A. R. Sadrolhosseini, M. Naseri, M. K. Halimah. Erratum: Polypyrrole Chitosan Cobalt Ferrite Nanoparticles Composite Layer for Measuring the Low Concentration of Fluorene Using Surface Plasmon Resonance [Chin. Phys. Lett. 34(2017)057501][J]. Chin. Phys. Lett., 2017, 34(8): 067301
[12] A. R. Sadrolhosseini, M. Naseri, M. K. Halimah. Polypyrrole Chitosan Cobalt Ferrite Nanoparticles Composite Layer for Measuring the Low Concentration of Fluorene Using Surface Plasmon Resonance[J]. Chin. Phys. Lett., 2017, 34(5): 067301
[13] Xin Sun. Generalized Hellmann–Feynman Theorem and Its Applications[J]. Chin. Phys. Lett., 2016, 33(12): 067301
[14] Chuan-Pu Liu, Xin-Li Zhu, Jia-Sen Zhang, Jun Xu, Yamin Leprince-Wang, Da-Peng Yu. Energy Levels of Coupled Plasmonic Cavities[J]. Chin. Phys. Lett., 2016, 33(08): 067301
[15] Xiao-Kun Zhao, Yuan Yao, Pei-Lin Lang, Hong-Lian Guo, Xi Shen, Yan-Guo Wang, Ri-Cheng Yu. Absorption Range and Energy Shift of Surface Plasmon in Au Monomer and Dimer[J]. Chin. Phys. Lett., 2016, 33(02): 067301
Viewed
Full text


Abstract