CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
|
|
|
|
The Structural Modification of LiTaO3 Crystal Induced by 100-keV H-ion Implantation |
PANG Li-Long1,2, WANG Zhi-Guang1**, YAO Cun-Feng1, ZANG Hang3, LI Yuan-Fei1,2, SUN Jian-Rong1, SHEN Tie-Long1,2, WEI Kong-Fang1, ZHU Ya-Bin1,2, SHENG Yan-Bin1, CUI Ming-Huan1,2, JIN Yun-Fan1 |
1Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 2Graduate University of Chinese Academy of Sciences, Beijing 100049 3Xi'an Jiaotong University, Xi'an 710049 |
|
Cite this article: |
PANG Li-Long, WANG Zhi-Guang, YAO Cun-Feng et al 2012 Chin. Phys. Lett. 29 066801 |
|
|
Abstract The effects of 100 keV H-ion implantation on the structure of LiTaO3 crystal are investigated by Raman and UV/VIS/NIR spectroscopies. The implantation fluence is in the range from 1.0×1013 to 1.0×1017 H+/cm2. The experimental results show the dependence of the crystal structure on ion fluence. It is found that the structural modification of the LiTaO3 crystal is due to two processes. One is H?ions occupying lithium vacancies (VLi), which is predominant at a fluence less than 1.0×1014 H+/cm2. This process causes the reduction of negative charge centers in the crystal and relaxation of distortion in the local lattice structure. The other is the influence of defects created during implantation, which plays a dominant role gradually in the structural modification at a fluence larger than 1.0×1015 H+/cm2.
|
Keywords:
68.55.Ln
42.70.-a
78.40.-q
|
|
Received: 14 March 2012
Published: 31 May 2012
|
|
PACS: |
68.55.Ln
|
(Defects and impurities: doping, implantation, distribution, concentration, etc.)
|
|
42.70.-a
|
(Optical materials)
|
|
78.40.-q
|
(Absorption and reflection spectra: visible and ultraviolet)
|
|
|
|
|
[1] Li M H and Yang C H 2003 Introduction to Photorefractive Materials Science (Beijing: Science Press) (in Chinese)[2] Wang K M, Chen F, Hu H, Zhang J H, Lu F, Shi B R, Lu Q M and Ma C Q 2001 Opt. Commun. 196 215[3] Mignotte C 2005 Nucl. Instrum. Methods Phys. Res. B 229 55[4] Yamamoto K, Mizuuchi K, Kitaoka Y and Kato M 1993 Appl. Phys. Lett. 62 2599[5] Ahlfeldt H 1994 J. Appl. Phys. 76 3255[6] Savatinova I, Savova I, Ziling C C and Atuchin V 2000 Appl. Phys. A 70 555[7] Chen F, Wang X L and Wang K M 2007 Opt. Mater. 29 1523[8] Raptis C 1988 Phys. Rev. B 38 10007[9] Kostritskii S, Bourson P, Aillerie M, Fontana M and Kip D 2006 Appl. Phys. B 82 423[10] Zhang Z, Rusakova I A and Chu W K 2002 J. Appl. Phys. 91 3562[11] Zhang W W, Cui Q L, Pan Y W, Dong S S, Liu J and Zou G T 2002 Chin. Phys. Lett. 19 1666[12] Penna A F, Chaves A, Andrade P d R and Porto S P S 1976 Phys. Rev. B 13 4907[13] Repelin Y, Husson E, Bennani F and Proust C 1999 J. Phys. Chem. Solids 60 819[14] Kim B K, Kang G Y, Yoon J K and Ro J H 2000 J. Phys. Chem. Solids 61 637[15] Weng W L, Liu Y W and Zhang X Q 2008 Chin. Phys. Lett. 25 4303[16] Baumer C, David C, Tunyagi A, Betzler K, Hesse H, Kratzig E and Wohlecke M 2003 J. Appl. Phys. 93 3102[17] Ziegler J F, Biersack J P and Ziegler M D 2008 Stopping and Range of Ions in Matter (SRIM) http://en.wikipedia.org/wiki/Stopping_and_Range_of_Ions _in_Matter[18] Tang M J, Colombo L, Zhu J and Rubia T D 1997 Phys. Rev. B 55 14279[19] Grimaldi M G, Calcagno L, Musumeci P, Frangis N and VanLanduyt J 1997 J. Appl. Phys. 81 7181 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|