Chin. Phys. Lett.  2012, Vol. 29 Issue (6): 066201    DOI: 10.1088/0256-307X/29/6/066201
CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
Cross-over of the Plasticity Mechanism in Nanocrystalline Cu
YUE Yong-Hai1, WANG Li-Hua1, ZHANG Ze1,2, HAN Xiao-Dong1**
1Institute of Microstructure and Properties of Advanced Materials, Beijing University of Technology, Beijing 100124
2 Department of Materials Science, State Key Lab of Si Materials, Zhejiang University, Hangzhou 310027
Cite this article:   
YUE Yong-Hai, WANG Li-Hua, ZHANG Ze et al  2012 Chin. Phys. Lett. 29 066201
Download: PDF(1222KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Via in situ uniaxial tensile tests in a high-resolution transmission electron microscope, we directly observed a cross-over of plastic deformation mechanisms in a nanocrystalline (nc) Cu thin film containing nano-twin lamellae. For a certain twin lamellae length, the twin lamellae with a larger thickness emit dislocations inclined (Schmidt-factor dislocations, i.e., S-dislocations) toward the twin boundaries. Upon decreasing the twin lamellae thickness to a critical value, such as approximately 15 nm, the plasticity switches toward emission of twinning partial dislocations (T-dislocations) parallel to the twin planes that cause migration of the twin boundaries. The critical twin thickness value also depends on the length of the twin. These results provide direct evidence for the strengthening and softening mechanisms in nano-twinning structured metals.
Received: 06 December 2011      Published: 31 May 2012
PACS:  62.20.-x (Mechanical properties of solids)  
  62.20.F- (Deformation and plasticity)  
  62.20.M- (Structural failure of materials)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/6/066201       OR      https://cpl.iphy.ac.cn/Y2012/V29/I6/066201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
YUE Yong-Hai
WANG Li-Hua
ZHANG Ze
HAN Xiao-Dong
[1] Christian J W and Mahajan S 1995 Prog. Mater. Sci. 39 1
[2] Hall E O 1951 Proc. Phys. Soc. B 64 747
[3] Petch N J 1953 J. Iron Steel Inst. 174 25
[4] Lu L, Shen Y F, Chen X H, Qian L H and Lu K 2004 Science 304 422
[5] Lu L, Schwaiger R, Shan Z W, Dao M, Lu K and Suresh S 2005 Acta. Mater. 53 2169
[6] Shen Y F, Lu L, Lu Q H, Jin Z H and Lu K 2005 Scr. Mater. 52 989
[7] Lu L, Chen X, Huang X and Lu K 2009 Science 323 607
[8] Schi鴗z J, Tolla F D D and Jacobsen K W 1998 Nature 391 561
[9] Meyers M A, Mishra A and Benson D J 2006 Prog. Mater. Sci. 51 427
[10] Chokshi A H, Rosen A, Karch J and Gleiter H 1989 Scr. Metall. Mater. 23 1679
[11] Kumar K S, Suresh S, Chisholm M F, Horton J A and Wang P 2003 Acta Mater. 51 387
[12] Van. Swygenhoven H, Spaczer M, Caro A and Farkas D 1999 Phys. Rev. B 60 22
[13] Yamakov V, Wolf D, Phillpot S R and Gleiter H 2002 Acta Mater. 50 5005
[14] Li X Y, Wei Y J, Lu L, Lu K and Gao H J 2010 Nature 464 877
[15] Zhang Y F, Han X D, Zheng K, Zhang Z, Hao Y J, Guo X Y and Wang Z L 2007 Adv. Funct. Mater. 17 3435
[16] Han X D, Zhang Y F and Zhang Z 2006 Chinese Patents Nos 200610057989.5 and No 200610144031.x
[17] Wang L H, Han X D, Liu P, Yue Y H, Zhang Z and Ma E 2010 Phys. Rev. Lett. 105 135501
[18] Wang L H, Zhang Z Ma E and Han X D 2010 Appl. Phys. Lett. 98 051905
[19] Liu P, Mao S C, Wang LH, Zhang Z and Han X D 2011 Scr. Mater. 64 343
[20] Deng Q S, Cheng Y Q, Yue Y H, Zhang L, Zhang Z, Han X D and Ma E 2011 Acta Mater. 59 6511
[21] Yue Y H, Liu P, Zhang Z, Han X D and Ma E 2011 Nano. Lett. 11 3151
[22] Jin Z -H, Gumbsch P, Albe K, Ma E, Lu K, Gleiter H and Hahn H 2008 Acta. Mater. 56 1126
[23] Wang Y B, Wu B and Sui M L 2008 Appl. Phys. Lett. 93 041906
[24] Hirth J P and Lothe J 1982 Theory of Dislocations 2nd edn (New York: John Wiley and Sons) p 764
[25] Van Swygenhoven H, Derlet P M and Fr鴖eth A G 2004 Nature Mater. 3 399
[26] Wang Y B, Sui M L and Ma E 2007 Phil. Mag. Lett. 87 935
[27] Fr鴖eth A G, Derlet P M and Van Swygenhovena H 2004 Appl. Phys. Lett. 85 5863
[28] Guo X and Xia Y Z 2011 Acta. Mater. 59 2350
[29] Deng C and Sansoz F 2009 Appl. Phys. Lett. 95 091914
Related articles from Frontiers Journals
[1] Chang Liu, Xianqi Song, Quan Li, Yanming Ma, and Changfeng Chen. Superconductivity in Shear Strained Semiconductors[J]. Chin. Phys. Lett., 2021, 38(8): 066201
[2] Zhongmin Ren, Muqin Wang, Shuaishuai Chen, Lei Ding, Hua Li, Jian Liu, Jieyun Zheng, Zhihong Liu, Deyu Wang, and Mingkui Wang. Improvement of Cyclic Stability of Na$_{0.67}$Mn$_{0.8}$Ni$_{0.1}$Co$_{0.1}$O$_{2}$ via Suppressing Lattice Variation[J]. Chin. Phys. Lett., 2021, 38(7): 066201
[3] Zhenjiang Han, Han Liu, Quan Li, Dan Zhou, and Jian Lv. Superior Mechanical Properties of GaAs Driven by Lattice Nanotwinning[J]. Chin. Phys. Lett., 2021, 38(4): 066201
[4] Xue-Hua Zhang, Rong Li, Yong-Qing Zhao, and Wei-Dong Zeng. Shear-Banding Evolution Dynamics during High Temperature Compression of Martensitic Ti-6Al-4V Alloy[J]. Chin. Phys. Lett., 2020, 37(11): 066201
[5] Lei Guo, Gang Tang, Jiawang Hong. Mechanical Properties of Formamidinium Halide Perovskites FABX$_{3}$ (FA=CH(NH$_{2})_{2}$; B=Pb, Sn; X=Br, I) by First-Principles Calculations[J]. Chin. Phys. Lett., 2019, 36(5): 066201
[6] Nian-Rui Qu, Hong-chao Wang, Qing Li, Zhi-Ping Li, Fa-Ming Gao. An Orthorhombic Phase of Superhard $o$-BC$_{4}$N[J]. Chin. Phys. Lett., 2019, 36(3): 066201
[7] Zhi-Dong Han, Heng-Wei Luan, Shao-Fan Zhao, Na Chen, Rui-Xuan Peng, Yang Shao, Ke-Fu Yao. Microstructures and Mechanical Properties of AlCrFeNiMo$_{0.5}$Ti$_{x}$ High Entropy Alloys[J]. Chin. Phys. Lett., 2018, 35(3): 066201
[8] Yi Tian, Hong Wang, Chang-Sheng Zhang, Qiang Tian, Wei-Bin Zhang, Hong-Jia Li, Jian Li, Ben-De Liu, Guang-Ai Sun, Tai-Ping Peng, Yao Xu, Jian Gong. Compressive Behavior of TATB Grains inside TATB-Based PBX Revealed by In-Situ Neutron Diffraction[J]. Chin. Phys. Lett., 2017, 34(6): 066201
[9] Yu-Jie Hu, Sheng-Liang Xu, Hao Wang, Heng Liu, Xue-Chun Xu, Ying-Xiang Cai. Superhard BC$_2$N: an Orthogonal Crystal Obtained by Transversely Compressing (3,0)-CNTs and (3,0)-BNNTs[J]. Chin. Phys. Lett., 2016, 33(10): 066201
[10] Chun-Lei Fan, Bo-Han Ma, Da-Nian Chen, Huan-Ran Wang, Dong-Fang Ma. Spall Strength of Resistance Spot Weld for QP Steel[J]. Chin. Phys. Lett., 2016, 33(03): 066201
[11] GUO Wen-Feng, WANG Ling-Sheng, LI Zhi-Ping, XIA Mei-Rong, GAO Fa-Ming. Urtra-Hard Bonds in P-Carbon Stronger than Diamond[J]. Chin. Phys. Lett., 2015, 32(09): 066201
[12] ZHUO Long-Chao, LIANG Shu-Hua, ZHANG Tao. The 1.85 GPa AlSc Bulk Alloy with Abundant Nanoscale Growth Twins[J]. Chin. Phys. Lett., 2015, 32(07): 066201
[13] LIU Jian-Sheng, WANG Li-Jun, HE Shi-Tang. On the Fundamental Mode Love Wave in Devices Incorporating Thick Viscoelastic Layers[J]. Chin. Phys. Lett., 2015, 32(06): 066201
[14] FU Yuan-Yuan, LI Yin-Wei, HUANG Hong-Mei. Elastic and Dynamical Properties of YB4: First-Principles Study[J]. Chin. Phys. Lett., 2014, 31(11): 066201
[15] MAO Xu, LV Xing-Dong, WEI Wei-Wei, ZHANG Zhe, YANG Jin-Ling, QI Zhi-Mei, YANG Fu-Hua. A Wafer-Level Sn-Rich Au–Sn Bonding Technique and Its Application in Surface Plasmon Resonance Sensors[J]. Chin. Phys. Lett., 2014, 31(05): 066201
Viewed
Full text


Abstract