Chin. Phys. Lett.  2012, Vol. 29 Issue (6): 065201    DOI: 10.1088/0256-307X/29/6/065201
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES |
Electrostatic Dust Acoustic Solitons in Pair-Ion-Electron Plasmas
Hafeez Ur Rehman
Theoretical Plasma Physics Division, Pakistan Institute of Nuclear Science and Technology (PINSTECH), P.O. Nilore, Islamabad, Pakistan Department of Physics and Applied Mathematics, Pakistan Institute of Engineering and Applied Sciences (PIEAS), P.O. Nilore, Islamabad, Pakistan
Cite this article:   
Hafeez Ur Rehman 2012 Chin. Phys. Lett. 29 065201
Download: PDF(467KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Using the reductive perturbation method, a Korteweg-de Vries (KdV) equation is derived to study the nonlinear properties of electrostatic collisionless dust acoustic solitons in pair-ion-electron (p-i-e) plasmas. The fluid model is chosen for positive ions, negative ions, and the fraction of electrons and charged (both positive and negative) dynamic dust particles. It is realized that electrostatic hump structures can be found when the dust particles are positively charged, and electrostatic dip structures can be detected for negatively charged dust particles. Numerical solutions for these dust acoustic solitons are plotted and their characteristics are discussed. It is found that the amplitude and width of the electrostatic dust acoustic solitons increase when the density of the dust particles and/or the temperature of the negative ions increases, and that the amplitude and width of these solitons decrease when the temperature of the positive ions increases. As pair-ion plasmas mimic electron-positron plasmas, our results might be helpful in understanding the nonlinear dust acoustic solitary waves in super dense astronomical bodies like neutron stars.
Received: 04 January 2012      Published: 31 May 2012
PACS:  52.35.Fp (Electrostatic waves and oscillations (e.g., ion-acoustic waves))  
  52.35.Sb (Solitons; BGK modes)  
  52.27.Lw (Dusty or complex plasmas; plasma crystals)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/6/065201       OR      https://cpl.iphy.ac.cn/Y2012/V29/I6/065201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Hafeez Ur Rehman
[1] Ginzburg V L 1971 Sov. Phys. Usp. 14 83
[2] Sturrock P A 1971 Astrophys. J. 164 529
[3] Manchester R N and Taylor J H 1977 Pulsars (San Francisco: Freeman W H)
[4] Michel F C 1982 Rev. Mod. Phys. 54 1
[5] Michel F C 1991 Theory of Neutron Star Magnetospheres (Chicago: University of Chicago Press)
[6] Miller H R and Witta P J 1987 Active Galactic Nuclei (Berlin: Springer-Verlag) p 202
[7] Gibbons G W, Hawking S W and Siklos S 1983 The Very Early Universe (Chicago: University of Chicago Press)
[8] Surko C M, Leventhal M and Passner A 1989 Phys. Rev. Lett. 62 901
[9] Greaves R G, Tinkle M D and Surko C M 1994 Phys. Plasmas 1 1439
[10] Zhao J, Sakai J I and Nishikawa K 1996 Phys. Plasmas 3 844
[11] Esfandyari-Kalejahi A, Kourakis I and Shukla P K 2006 Phys. Plasmas 13 122310
[12] Zank G P and Greaves R G 1995 Phys. Rev. E 51 6079
[13] Oohara W and Hatakeyama R 2003 Phys. Rev. Lett. 91 205005
[14] Oohara W, Date D and Hatakeyama R 2005 Phys. Rev. Lett. 95 175003
[15] Mahmood S and Ur-Rehman H 2010 Phys. Plasmas 17 072305
[16] Saleem H 2007 Phys. Plasmas 14 014505
[17] Verheest F 2006 Phys. Plasmas 13 082301
[18] Mahmood S, Khan S A and Ur-Rehman H 2010 Phys. Plasmas 17 112312
[19] Saleem H, Shukla P K and Eliasson B 2008 Phys. Scr. 77 015503
[20] Abdelsalam U M 2010 Physica B 405 3914
[21] Misra A P and Shukla P K 2008 Phys. Plasmas 15 122107
[22] Mushtaq A, Saeed R and Haque Q 2009 Phys. Plasmas 16 084501
[23] Zhao B and Zheng J 2007 Phys. Plasmas 14 062106
[24] Zhao B and Zheng J 2008 Phys. Plasmas 15 082314
[25] Shukla P K and Mamun A A 2002 Introduction to Dusty Plasma Physics (Bristol: IOP Publishing)
[26] Washimi H and Tanuiti T 1966 Phys. Rev. Lett. 17 996
Related articles from Frontiers Journals
[1] Shizhao Wei, Yahui Wang, Peiwan Shi, Wei Chen, Ningfei Chen, and Zhiyong Qiu. Nonlinear Coupling of Reversed Shear Alfvén Eigenmode and Toroidal Alfvén Eigenmode during Current Ramp[J]. Chin. Phys. Lett., 2021, 38(3): 065201
[2] L. Z. Kahlon, I. Javaid. Formation of Nonlinear Solitary Vortical Structures by Coupled Electrostatic Drift and Ion-Acoustic Waves[J]. Chin. Phys. Lett., 2017, 34(12): 065201
[3] E. F. EL-Shamy. Nonlinear Propagation of Positron-Acoustic Periodic Travelling Waves in a Magnetoplasma with Superthermal Electrons and Positrons[J]. Chin. Phys. Lett., 2017, 34(6): 065201
[4] H. G. Abdelwahed, E. K. El-Shewy, A. A. Mahmoud. On the Time Fractional Modulation for Electron Acoustic Shock Waves[J]. Chin. Phys. Lett., 2017, 34(3): 065201
[5] Hong-Jie Liu, Yu-Qiu Gu, Gang Li, Feng Lu, Bo Cui, Zeng-Hai Dai, Yan-Yun Ma, Wei-Min Zhou, Lei-Feng Cao, Bao-Han Zhang. Imaging Laser wake fields by Thomson Scattering a Co-Propagating Pulse[J]. Chin. Phys. Lett., 2017, 34(1): 065201
[6] H. G. Abdelwahed, E. K. ElShewy, A. A. Mahmoud. On Time-Fractional Cylindrical Nonlinear Equation[J]. Chin. Phys. Lett., 2016, 33(11): 065201
[7] Chun-Hua Li, Zhen-Wei Xia, Ya-Ping Wang, Xiao-Hui Zhang. Propagation of Surface Modes in a Warm Non-Magnetized Quantum Plasma System[J]. Chin. Phys. Lett., 2016, 33(10): 065201
[8] Jun Guo. A Particle-in-Cell Simulation Study on Harmonic Waves Excited by Electron Beams in Unmagnetized Plasmas[J]. Chin. Phys. Lett., 2016, 33(08): 065201
[9] Chun-Yun Gan, Nong Xiang, Zhi Yu. Spectral Broadening of Ion Bernstein Wave Due to Parametric Decay Instabilities[J]. Chin. Phys. Lett., 2016, 33(08): 065201
[10] Zi-Juan Xie, Yu Sui, Yi Wang, Xian-Jie Wang, Yang Wang, Zhi-Guo Liu, Bing-Sheng Li, Yu Bai, Zhi-Hao Wang. Modulation of Void Motion Behavior in a Magnetized Dusty Plasma[J]. Chin. Phys. Lett., 2016, 33(01): 065201
[11] SUN Xin-Feng, JIANG Zhong-He, XU Tao, HU Xi-Wei, ZHUANG Ge, WANG Lu, WANG Xiao-Hong. Absolute and Convective Instabilities of Two-Plasmon Decay in an Inhomogeneous Magnetized Plasma[J]. Chin. Phys. Lett., 2015, 32(12): 065201
[12] Shah M. G., Hossen M. R., Sultana S., Mamun A. A.. Positron-Acoustic Shock Waves in a Degenerate Multi-Component Plasma[J]. Chin. Phys. Lett., 2015, 32(08): 065201
[13] M. Ferdousi, S. Yasmin, S. Ashraf, A. A. Mamun. Ion-Acoustic Shock Waves in Nonextensive Electron-Positron-Ion Plasma[J]. Chin. Phys. Lett., 2015, 32(01): 065201
[14] LI Shi-You, ZHANG Shi-Feng, DENG Xiao-Hua, CAI Hong. Large Bi-Polar Signature in a Perpendicular Electric Field of Two-Dimensional Electrostatic Solitary Waves Associated with Magnetic Reconnection: Statistics and Discussion[J]. Chin. Phys. Lett., 2013, 30(1): 065201
[15] LI Shi-You, ZHANG Shi-Feng, DENG Xiao-Hua, and CAI Hong. Spatial Evolution of Electrostatic Solitary Waves along Plasma Sheet Boundary Layer Adjacent to the Magnetic Reconnection X-Line[J]. Chin. Phys. Lett., 2012, 29(8): 065201
Viewed
Full text


Abstract