Chin. Phys. Lett.  2012, Vol. 29 Issue (6): 064211    DOI: 10.1088/0256-307X/29/6/064211
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Self-Trapping of Three-Dimensional Spatiotemporal Solitary Waves in Self-Focusing Kerr Media
YANG Zheng-Ping1, ZHONG Wei-Ping2**
1Department of Medical Science, Shunde Polytechnic, Shunde 528300
2Department of Electronic and Information Engineering, Shunde Polytechnic, Shunde 528300
Cite this article:   
YANG Zheng-Ping, ZHONG Wei-Ping 2012 Chin. Phys. Lett. 29 064211
Download: PDF(1280KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We theoretically demonstrate that Kerr media under self-focusing nonlinearity support three-dimensional spatiotemporal solitary waves in various patterns, such as necklace-, disk-, and vortex-ring shapes. The structures of these solitons are defined by the set of radial, orbital, and azimuthal quantum numbers, (n,l,m), respectively.
Received: 07 September 2011      Published: 31 May 2012
PACS:  42.65.Tg (Optical solitons; nonlinear guided waves)  
  05.45.Yv (Solitons)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/6/064211       OR      https://cpl.iphy.ac.cn/Y2012/V29/I6/064211
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
YANG Zheng-Ping
ZHONG Wei-Ping
[1] Silberberg Y 1990 Opt. Lett. 15 1282
[2] Malomed B A, Mihalache D, Wise F and Torner L 2005 J. Opt. B 7 R53
[3] Kelley P L 1965 Phys. Rev. Lett. 15 1005
[4] Minardi S, Eilenberger F, Kartashov Y V et al 2010 Phys. Rev. Lett. 105 263901
[5] Blagoeva A B, Dinev S G, Dreischuh A A and Naidenov A 1991 IEEE J. Quantum Electron. 27 2060
[6] Akhmediev N, Ankiewicz A and Soto-Crespo J 1993 Opt. Lett. 18 411
[7] Fibich G and Ilan B 2004 Opt. Lett. 29 887
[8] Turitsyn S K 1985 Theor. Math. Phys. 64 797
[9] Beli? M, Petrovic N, Zhong W P, Xie R and Chen G 2008 Phys. Rev. Lett. 101 123904
[10] Zhong W P, Beli? M, Assanto G and Huang T 2011 J. Phys. B: At. Mol. Opt. Phys. 44 095403
[11] Zwillinger D 1997 Handbook of Differential Equations 3rd edn (Boston: Academic)
[12] Wang D S, Song S W, Xiong B and Liu W M 2011 Phys. Rev. A 84 053607
[13] Baym G and Pethick C J 1996 Phys. Rev. Lett. 76 6
[14] Belmonte-Beitia J, Pere-Garcia V M, Vekslerchick V and Konotop V V 2008 Phys. Rev. Lett. 100 164102
[15] Bergé L 1998 Phys. Rep. 303 259
[16] Vakhitov N G and Kolokolov A A 1973 Radiophys. Quantum Electron. 16 783
Related articles from Frontiers Journals
[1] Shubin Wang, Guoli Ma, Xin Zhang, and Daiyin Zhu. Dynamic Behavior of Optical Soliton Interactions in Optical Communication Systems[J]. Chin. Phys. Lett., 2022, 39(11): 064211
[2] Chong Liu, Shao-Chun Chen, Xiankun Yao, and Nail Akhmediev. Modulation Instability and Non-Degenerate Akhmediev Breathers of Manakov Equations[J]. Chin. Phys. Lett., 2022, 39(9): 064211
[3] Qin Zhou, Yu Zhong, Houria Triki, Yunzhou Sun, Siliu Xu, Wenjun Liu, and Anjan Biswas. Chirped Bright and Kink Solitons in Nonlinear Optical Fibers with Weak Nonlocality and Cubic-Quantic-Septic Nonlinearity[J]. Chin. Phys. Lett., 2022, 39(4): 064211
[4] Yuan Zhao, Yun-Bin Lei, Yu-Xi Xu, Si-Liu Xu, Houria Triki, Anjan Biswas, and Qin Zhou. Vector Spatiotemporal Solitons and Their Memory Features in Cold Rydberg Gases[J]. Chin. Phys. Lett., 2022, 39(3): 064211
[5] Yiling Zhang, Chunyu Jia, and Zhaoxin Liang. Dynamics of Two Dark Solitons in a Polariton Condensate[J]. Chin. Phys. Lett., 2022, 39(2): 064211
[6] Qin Zhou. Influence of Parameters of Optical Fibers on Optical Soliton Interactions[J]. Chin. Phys. Lett., 2022, 39(1): 064211
[7] Qi-Hao Cao  and Chao-Qing Dai. Symmetric and Anti-Symmetric Solitons of the Fractional Second- and Third-Order Nonlinear Schr?dinger Equation[J]. Chin. Phys. Lett., 2021, 38(9): 064211
[8] Yuan-Yuan Yan  and Wen-Jun Liu. Soliton Rectangular Pulses and Bound States in a Dissipative System Modeled by the Variable-Coefficients Complex Cubic-Quintic Ginzburg–Landau Equation[J]. Chin. Phys. Lett., 2021, 38(9): 064211
[9] Kai Ning, Lei Hou, Song-Tao Fan, Lu-Lu Yan, Yan-Yan Zhang, Bing-Jie Rao, Xiao-Fei Zhang, Shou-Gang Zhang, Hai-Feng Jiang. An All-Polarization-Maintaining Multi-Branch Optical Frequency Comb for Highly Sensitive Cavity Ring-Down Spectroscopy *[J]. Chin. Phys. Lett., 0, (): 064211
[10] Kai Ning, Lei Hou, Song-Tao Fan, Lu-Lu Yan, Yan-Yan Zhang, Bing-Jie Rao, Xiao-Fei Zhang, Shou-Gang Zhang, Hai-Feng Jiang. An All-Polarization-Maintaining Multi-Branch Optical Frequency Comb for Highly Sensitive Cavity Ring-Down Spectroscopy[J]. Chin. Phys. Lett., 2020, 37(6): 064211
[11] Li-Chen Zhao, Yan-Hong Qin, Wen-Long Wang, Zhan-Ying Yang. A Direct Derivation of the Dark Soliton Excitation Energy[J]. Chin. Phys. Lett., 2020, 37(5): 064211
[12] Chun-Yu Jia, Zhao-Xin Liang. Dark Soliton of Polariton Condensates under Nonresonant $\mathcal{P}\mathcal{T}$-Symmetric Pumping[J]. Chin. Phys. Lett., 2020, 37(4): 064211
[13] Hui Li, S. Y. Lou. Multiple Soliton Solutions of Alice–Bob Boussinesq Equations[J]. Chin. Phys. Lett., 2019, 36(5): 064211
[14] Wei Qi, Hai-Feng Li, Zhao-Xin Liang. Variational Approach to Study $\mathcal{PT}$-Symmetric Solitons in a Bose–Einstein Condensate with Non-locality of Interactions[J]. Chin. Phys. Lett., 2019, 36(4): 064211
[15] Yun-Cheng Liao, Bin Liu, Juan Liu, Jia Chen. Asymmetric and Single-Side Splitting of Dissipative Solitons in Complex Ginzburg–Landau Equations with an Asymmetric Wedge-Shaped Potential[J]. Chin. Phys. Lett., 2019, 36(1): 064211
Viewed
Full text


Abstract