FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
|
|
|
|
Optical 90° Hybrid Based on an InP 4×4 Multimode Interference Coupler for Coherent Receiver Application |
LIU Wei-Hua1**, ZHAO Yan-Li1, XU Cheng-Zhi1, ZHAO Jian-Yi1, LIU Wen1, XU Yuan-Zhong2 |
1Wuhan National Laboratory for Optoelectronics, College of Optoelectronic Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 2Wuhan Telecommunication Device Co. Ltd., Wuhan 430074 |
|
Cite this article: |
LIU Wei-Hua, ZHAO Yan-Li, XU Cheng-Zhi et al 2012 Chin. Phys. Lett. 29 064210 |
|
|
Abstract An optical 90° hybrid based on an InP 4×4 multimode interference (MMI) coupler is designed and fabricated for the application in a coherent receiver. It reveals that the width of multimode waveguide is the most critical parameter for the devices, and the multimode waveguide width can be accurately controlled within 0.1 μm in our experiments. Across the entire C-band (1527–1561 nm), the maximum imbalance of the devices is less than 0.7 dB, and the common mode rejection ratios for in-phase channels and quadrature channels are better than -24 dB.
|
Keywords:
42.82.Et
42.82.Bq
42.82.Cr
|
|
Received: 12 January 2012
Published: 31 May 2012
|
|
PACS: |
42.82.Et
|
(Waveguides, couplers, and arrays)
|
|
42.82.Bq
|
(Design and performance testing of integrated-optical systems)
|
|
42.82.Cr
|
(Fabrication techniques; lithography, pattern transfer)
|
|
|
|
|
[1] Ip E, Lau A P T, Barros D J F and Kahn J M 2008 Opt. Express 16 753[2] Roberts K, Sullivan M, Wu K T, Sun H, Awadalla A, Krause D and Laperle C 2009 IEEE J. Lightwave Technol. 27 3546[3] Hou P P, Zhi Y N, Zhou Y, Sun J F and Liu L R 2011 Chin. Phys. Lett. 28 074204[4] Doerr C R, Winzer P J, Chen Y K, Chandrasekhar S and Rasras M S 2010 IEEE J. Lightwave Technol. 28 520[5] Sakamaki Y et al 2010 Electron. Lett. 46 58[6] Cho P S, Khurgin J B, Shpantzer I 2006 IEEE Photon. Technol. Lett. 18 2209[7] Doerr C R et al 2007 IEEE Photon. Technol. Lett. 19 1765[8] Inoue T and Nara K 2010 IEEE Conference on ECOC (Torino, Italy 19–23 September 2010) Mo.2.F.4[9] Zimmermann L, Voigt K, Winzer G, Petermann K and Weinert C M 2009 IEEE Photon. Technol. Lett. 21 143[10] Doerr C R, Zhang L, Winzer P J, Weimann N, Houtsma V, Hu T C, Sauer N J, Buhl L L, Neilson D T, Chandrasekhar S and Chen Y K 2011 IEEE Photon. Technol. Lett. 23 694[11] Bach H G, Kunkel R, Mekonnen G G, Zhang R and Schmidt D 2011 IEEE Conference on Optical Fiber Communication (Los Angeles 22–26 March 2011) OML1[12] Jeong S H and Morito K 2009 Opt. Lett. 34 3505[13] Boudreau M, Poirier M, Yoffe G and Pezeshki B 2009 IEEE Conference on Optical Fiber Communication (San Diego 22–26 March 2009) OMK6[14] Besse P A, Bachmann M, Melchior H, Soldano L B and Smit M K 1994 IEEE J. Lightwave Technol. 12 1004[15] Soldano L B and Pennings C M 1995 IEEE J. Lightwave Technol. 13 615[16] Li Y P, Yu J Z, Xia J S and Chen S W 2004 Chin. Phys. Lett. 21 976 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|