FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
|
|
|
|
Experimental Study of Tunneling modes in Photonic Crystal Heterostructure Consisting of Single-Negative Materials |
ZHANG Li-Wei1,2**, ZHANG Ye-Wen2, HE Li2, WANG You-Zhen2 |
1School of Physics and Chemistry, Henan Polytechnic University, Jiaozuo 454000 2Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, Pohl Institute of Solid State Physics, Tongji University, Shanghai 200092 |
|
Cite this article: |
ZHANG Li-Wei, ZHANG Ye-Wen, HE Li et al 2012 Chin. Phys. Lett. 29 064209 |
|
|
Abstract The pair structure and the photonic crystal heterostructure consisting of ε-negative and μ-negative materials are successfully fabricated by using the transmission line approach. We experimentally investigate the tunneling mode properties by simulating and measuring the scattering parameters and phase shifts. It is shown that the pair structure and the photonic crystal heterostructures possess tunneling modes when the general zero average permittivity and zero average permeability condition are satisfied. At the tunneling frequency, the field (voltage) mainly concentrates in the center of the constructed structures based on the amplification of the evanescent wave. Moreover, the tunneling mode of the photonic crystal heterostructure has zero phase delay. The characteristics have potential applications in design of zero phase delay filters.
|
Keywords:
42.70.Qs
78.20.Ci
41.20.Jb
|
|
Received: 10 February 2012
Published: 31 May 2012
|
|
PACS: |
42.70.Qs
|
(Photonic bandgap materials)
|
|
78.20.Ci
|
(Optical constants (including refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity))
|
|
41.20.Jb
|
(Electromagnetic wave propagation; radiowave propagation)
|
|
|
|
|
[1] Lee H Y, Makino H, Yao T and Tanaka A 2002 Appl. Phys. Lett. 81 4502[2] Qiao F, Zhang C, Wan J and Zi J 2000 Appl. Phys. Lett. 77 3698[3] Wang Z S, Wang L, Wu Y G, Chen L Y, Chen X S and Lu W 2004 Appl. Phys. Lett. 84 1629[4] Veselago V G 1968 Sov. Phys. Usp. 10 509[5] S P Burgos, R de. Waele, A Polman and H A Atwater 2010 Nature Mater. 9 407[6] Li J, Zhou L, Chan C T and Sheng P 2003 Phys. Rev. Lett. 90 083901[7] Kocaman S, Chatterjee R, Panoiu N C, McMillan J F, Yu M B, Osgood R M, Kwong D L and Wong C W 2009 Phys. Rev. Lett. 102 203905[8] Chen Y H 2008 Appl. Phys. Lett. 92 011925[9] Alù A and Engheta N 2003 IEEE Trans. Antennas Propagat. 51 2558[10] Wang Z L, Jiang H T, Li Y H and Chen H 2010 Opt. Express 18 14311[11] Guan G S, Jiang H T, Li H Q, Zhang Y W and Chen H 2006 Appl. Phys. Lett. 88 211112[12] Zhu X F, Zou X Y, Zhou X W, Liang B and Cheng J C 2012 Chin. Phys. Lett. 29 014102[13] Zhao Q, Kang L, Du B, Zhao H, Ulin-Avila E, Genov D A, Bartal G and Zhang X 2008 Phys. Rev. Lett. 101 027402[14] Dhouibi A, Burokur S N, de Lustrac A and Priou A 2012 Appl. Phys. A 106 47[15] Zhang S, Fan W J, Minhas B K, Frauenglass A, Malloy K J and Brueck S R J 2005 Phys. Rev. Lett. 94 037402[16] Yahiaoui R, Němec H, Ku?el P, Kadlec F, Kadlec C and Mounaix P 2009 Opt. Lett. 34 3541[17] Caloz C and Itoh T 2006 Electromagnetic Metamaterials, Transmission Line Theory and Microwave Applications (New York: Wiley and IEEE Press)[18] Zhang L W, Zhang Y W, He L, Li H Q and Chen H 2006 Phys. Rev. E 74 056615[19] Jiang H T, Chen H, Li H Q, Zhang Y W, Zi J and Zhu S Y 2004 Phys. Rev. E 69 066607[20] Xiang Y J, Dai X Y, Wen S C, Tang Z X and Fan D Y 2011 J. Opt. Soc. Am. B 28 1187[21] Zhang L W, Zhang Y W, Yang Y P and Chen H 2011 Phys. Rev. E 83 046604[22] Wang Y Z, Zhang Y W, He L, Liu F Q, Li H Q and Chen H 2006 J. Appl. Phys 100 113503[23] Zeng Y, Wu Q and Werner D H 2010 Opt. Lett. 35 1431[24] Morits D K and Simovski C R 2010 Phys. Rev. B 81 205112 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|