FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
|
|
|
|
A Polarization-Adjustable Picosecond Deep-Ultraviolet Laser for Spin- and Angle-Resolved Photoemission Spectroscopy |
ZHANG Feng-Feng1,3, YANG Feng1, ZHANG Shen-Jin1**, WANG Zhi-Min1, XU Feng-Liang1, PENG Qin-Jun1, ZHANG Jing-Yuan1, WANG Xiao-Yang2, CHEN Chuang-Tian2, XU Zu-Yan1 |
1RCLPT, Key Lab of Functional Crystal and Laser Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190 2Beijing Center for Crystal R&D, Key Lab of Functional Crystal and Laser Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190 3Graduate University of Chinese Academy of Sciences, Beijing 100190 |
|
Cite this article: |
ZHANG Feng-Feng, YANG Feng, ZHANG Shen-Jin et al 2012 Chin. Phys. Lett. 29 064206 |
|
|
Abstract We report on a polarization-adjustable picosecond deep-ultraviolet (DUV) laser at 177.3 nm. The DUV laser was produced by second harmonic generation from a mode-locked laser at 355 nm in nonlinear optical crystal KBBF. The laser delivered a maximum average output power of 1.1 mW at 177.3 nm. The polarization of the 177.3 nm beam was adjusted with linear and circular polarization by means of λ/4 and λ/2 wave plates. To the best of our knowledge, the laser has been employed as the circularly polarized and linearly polarized DUV light source for a spin- and angle-resolved photoemission spectroscopy with high resolution for the first time.
|
|
Received: 25 November 2011
Published: 31 May 2012
|
|
PACS: |
42.72.Bj
|
(Visible and ultraviolet sources)
|
|
42.70.Mp
|
(Nonlinear optical crystals)
|
|
42.65.Ky
|
(Frequency conversion; harmonic generation, including higher-order harmonic generation)
|
|
|
|
|
[1] Velarde L, Engelhart D P, Matsiev D, LaRue J, Auerbach D J and Wodtke A M 2010 Rev. Sci. Instrum. 81 063106 [2] Kiss T, Kanetaka F, Yokoya T, Shimojima T, Kanai T K, Shin S, Onuki Y, Togashi T, Zhang C Q, Chen C T and Watanabe S 2005 Phys. Rev. Lett. 94 057001 [3] Liu G D, Wang G L, Zhu Y, Zhang H B, Zhang G C, Wang X Y, Zhou Y, Zhang W T, Liu H Y, Zhao L, Meng J Q, Dong X L, Chen C T, Xu Z Y and Zhou X J 2008 Rev. Sci. Instrum. 79 023105 [4] Balakrishnan G, Hu Y, Nielsen S B and Spiro T G 2005 Appl. Spectrosc. 59 776 [5] Chen C T, Lu J H, Togasi T, Suganuma T, Sekikawa T, Watanabe S, Xu Z Y and Wang J Y 2002 Opt. Lett. 27 637 [6] Zhou Y, Wang G L, Li C M, Peng Q J, Cui D F, Xu Z Y, Wang X Y, Zhu Y, Chen C T, Liu G D, Dong X L and Zhou X J 2008 Chin. Phys. Lett. 25 963 [7] Chen C T, Wang G L, Wang X Y and Xu Z Y 2009 Appl. Phys. B 97 9 [8] Peng Q J, Wang Z M, Zhang S J, Zhang F F, Yang F, Cui D F and Xu Z Y 2010 Int. Conf. Advanced Optoelectronics Lasers (Sevastopol, Ukraine 10–14 September 2010) p 28 [9] Zhang W T, Liu G D, Zhao L, Liu H Y, Meng J Q, Dong X L, Lu W, Wen J S, Xu Z J, Gu G D, Sasagawa T, Wang G L, Zhu Y, Zhang H B, Zhou Y, Wang X Y, Zhao Z X, Chen C T, Xu Z Y and Zhou X J 2008 Phys. Rev. Lett. 100 107002 [10] Meng J Q, Liu G D, Zhang W T, Zhao L, Liu H Y, Jia X W, Mu D X, Liu Sh Y, Dong X L, Zhang J, Lu W, Wang G L, Zhou Y, Zhu Y, Wang X Y, Xu Z Y, Chen C T and Zhou X J 2009 Nature 462 335 [11] Feder R and Henk J 1996 Lecture notes in physics (Berlin: Springer) vol 466 p 85 [12] Heinzmann U 1987 Phys. Scr. T17 77 [13] Schneider C M and Kirschner J 1995 Crit. Rev. Solid State Mater. Sci. 20 179 [14] Okuda T, Lobo-Checa J, Auw?rter W, Morscher M, Hoesch M, Petrov V N, Hensberger M, Tamai A, Dolocan A, Cirelli C, Corso M, Muntwiler M, Kl?ckner M, Roos M, Osterwalder J and Greber T 2009 Phys. Rev. B 80 180404(R) |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|