FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
|
|
|
|
Characteristic Optimization of 1.3 μm High-Speed MQW InGaAsP-AlGaInAs Lasers |
MAO Yi-Wei, WANG Yao, CHEN Yang-Hua, XUE Zheng-Qun, LIN Qi, DUAN Yan-Min, SU Hui** |
Fujian Institute Of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002 |
|
Cite this article: |
MAO Yi-Wei, WANG Yao, CHEN Yang-Hua et al 2012 Chin. Phys. Lett. 29 064204 |
|
|
Abstract We investigate 1.3 μm multi quantum-well (MQW) lasers with InGaAsP (well) and InGaAlAs (barrier) on InP for high speed application, compared to the typical structures of InGaAsP (well)-InGaAsP (barrier)/InP and InGaAlAs (well)-InGaAlAs (barrier)/InP with the same quaternary in the well and barrier. We calculate the characteristics of band offset and gain of InGaAsP-AlGaInAs quantum wells (QWs). The advances of the new QW design are mainly rooted in the large ratio between conduction-band and valence-band offsets (ΔEc:ΔEv=7:1), higher than the typical value of 4:6 in InGaAsP-InGaAsP and 7:3 in InGaAlAs-InGaAlAs for 1.3 μm lasers. Due to the low confinement energy of holes, non-uniformity of carrier distribution over multi-InGaAsP-AlGaInAs QWs is significantly reduced. The enhancement of high-speed performance of InGaAsP-AlGaInAs MQW lasers is investigated in terms of turn-on oscillation.
|
Keywords:
42.55.Px
42.60.Fc
73.50.-h
|
|
Received: 12 January 2012
Published: 31 May 2012
|
|
PACS: |
42.55.Px
|
(Semiconductor lasers; laser diodes)
|
|
42.60.Fc
|
(Modulation, tuning, and mode locking)
|
|
73.50.-h
|
(Electronic transport phenomena in thin films)
|
|
|
|
|
[1] Yasuhiro M, Hitoshi M, Shin A, Akira S and Yoh O 1998 IEEE J. Quantum Electron. 34 1970[2] Yasuhiro M, Hitoshi M, Shin A, Yoh O and Akira S 1998 IEEE J. Quantum Electron. 34 2340[3] Ishikawa T, Higashi T, Uchida T, Yamamoto T, Fujii T, Shoji H, Kobayashi M and Soda H 1998 IEEE Photon. Technol. Lett. 10 1703[4] Akram M N, Silfvenius C, Berggrcnt J, Kjebon O and Schatz R 2004 Semicond. Sci. Technol. 19 615[5] Yasuhiro M, Akira S and Yoh O 1998 10th Intern. Cod. on Indium Phosphide and Related Materials p 399[6] Hsieh S W and Kuo Y K 2006 Appl. Phys. A 82 287[7] Su H and Lester L F 2005 J. Phys. D: Apll. Phys. 38 2112[8] Akram M N, Kjebon O, Chacinski M, Schatz R Berggren J, Olsson F, Lourdudoss S and Berrier A 2009 J. Opt. Soc. Am. B 26 318[9] Liu G and Chuang S L 2001 IEEE J. Quantum Electron. 37 1283[10] Muhammad N A, Olle K, Saulius M, Richard S, Jesper B, Fredrik O and Sebastian L 2006 IEEE J. Quantum Electron. 42 713[11] Shun L C 2009 Phys. Photon. Devices 2nd edn (Hoboken, New Jersey: Wiley) p 80[12] Yasuhiro M, Hitoshi M, Shin A, Satoko K and Yoh O 1997 IEEE Photon. Technol. Lett. 9 25[13] Yong J C L, Judy M, Rorison and White I H 2002 IEEE J. Quantum Electron. 38 1553[14] Kazarinov R F and Belenky G L 1995 IEEE J. Quantum Electron. 31 423[15] Coldren L A and Corzine S W 1995 Diode Lasers Photonic Integerated Circuits (New York: Wiley-Interscience Publication) p 167[16] Asryan L V, Luriy S and Suris R A 2003 IEEE J. Quantum Electron. 39 404[17] Tessler N and Eisenstein G 1993 IEEE J. Quantum Electron. 29 1586[18] Tanaka H, Horita M, Matsushima Y and Takahashi Y 1996 Opt. Quantum Electron. 28 605[19] Ishikawa M, Nagarajan R, Fukushima T, Wasserbauer J G and Bowers J E 1992 IEEE J. Quantum Electron. 28 2230[20] Linh V T, Nguyen, Arthur J L, Phillip C R G and Dalma N 1995 IEEE J. Quantum Electron. 1 494 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|