FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
|
|
|
|
High-Stability Superfluorescent Fiber Source Based on an Er3+-Doped Photonic Crystal Fiber |
LIU Cheng-Xiang1, ZHANG Li2, WU Xu1, RUAN Shuang-Chen1** |
1Shenzhen Key Laboratory of Laser Engineering, College of Electronic Science and Technology, Shenzhen University, Shenzhen 518060 2 College of Information Engineering, Shenzhen University, Shenzhen 518060 |
|
Cite this article: |
LIU Cheng-Xiang, ZHANG Li, WU Xu et al 2012 Chin. Phys. Lett. 29 064202 |
|
|
Abstract A superfluorescent fiber source (SFS) based on an Er3+-doped photonic crystal fiber (EDPCF) is reported. Owing to the temperature insensitivity of the EDPCF, we show that it is possible to improve the mean wavelength stability of an SFS. Using single-backward configuration, the EDPCF SFS mean wavelength variation at temperatures from -40°C to 60°C is less than 100 ppm, indicating that the thermal coefficient of the EDPCF is smaller than 1 ppm/°C and 3–6 times smaller than those of two conventional Er3+-doped fibers under the same experimental conditions. The best performance of the EDPCF-based SFS is obtained between 0°C and 60°C, at which the change in the mean wavelength is only 17.445 ppm.
|
Keywords:
42.81.Pa
42.81.Bm
42.55.Wd
|
|
Received: 01 March 2012
Published: 31 May 2012
|
|
|
|
|
|
[1] Wysocki P F, Digonnet M J F, Kim B Y and Shaw H J 1994 J. Lightwave Technol. 12 550[2] Hall D C, Burns W K and Moeller R P 1995 J. Lightwave Technol. 13 1452[3] Chen S P, Liu Z J, Li Y G, Lu K C and Zhou S H 2008 Opt. Express 16 207[4] Wang A M, Ou P, Feng L S, Zhang C X, Cui X M, Liu H D and Gan Z Z 2009 IEEE Photon. Technol. Lett. 21 1843[5] Ou P, Cao B, Zhang C X, Li Y and Yang Y H 2008 Electron. Lett. 44 187[6] Falquier D G, Digonnet M J F and Shaw H J 2000 IEEE Photon. Technol. Lett. 12 1465[7] Matar M, Bassett I M, Haywood J H and Michie A M 2006 Meas. Sci. Technol. 17 1020[8] Zatta P Z and Hall D C 2002 Electron. Lett. 38 406[9] Patrick H J, Kersey A D, Burns W K and Moeller R P 1997 Electron. Lett. 33 2061[10] Cregan R F, Mangan B J, Knight J C, Birks T A, Russell P St J, Roberts P J and Allan D C 1999 Science 285 1537[11] Knight J C, Birks T A, Russell P St J and Aktin D M 1996 Opt. Lett. 21 1547[12] Broeng J, Mogilevstev D, Barkou S E and Bjarklev A 1999 Opt. Fiber Technol. 5 305[13] Furusawa K, Kogure T, Monro T M and Richardson D J 2004 Opt. Express 12 3452[14] Dobb H, Kalli K and Webb D J 2004 Electron. Lett. 40 657[15] Ju J, Wang Z, Jin W and Demokan M S 2006 IEEE Photon. Technol. Lett. 18 2168[16] Wu X, Ruan S C, Liu C X and Zhang L 2012 Appl. Opt. 51 2277[17] Blin S, Kim H K, Digonnet M J F and Kino G S 2007 J. Lightwave Technol. 25 861[18] Kim H K, Digonnet M J F and Kino G S 2006 J. Lightwave Technol. 24 3169[19] Lægsgaard J and Bjarklev A 2004 Opt. Commun. 237 431[20] Bourliaguet B, Paré C, émond F, Croteau A, Proulx A and Vallée R 2003 Opt. Express 11 3412[21] Chong J H, Rao M K, Zhu Y N and Shum P 2003 IEEE Photon. Technol. Lett. 15 942 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|