Chin. Phys. Lett.  2012, Vol. 29 Issue (6): 063301    DOI: 10.1088/0256-307X/29/6/063301
ATOMIC AND MOLECULAR PHYSICS |
Chaotic Dynamics of Triatomic Normal Mode Molecules
ZHAI Liang-Jun, ZHENG Yu-Jun**, DING Shi-Liang
School of Physics, Shandong University, Jinan 250100
Cite this article:   
ZHAI Liang-Jun, ZHENG Yu-Jun, DING Shi-Liang 2012 Chin. Phys. Lett. 29 063301
Download: PDF(1070KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We investigate the chaotic dynamics of normal mode molecules from the classical point of view using the coupling Morse oscillators. New interesting phenomena of the fractured tori and the cross of tori on the Poincar-section, which go against our traditional understanding, are found and investigated. Also, we find that the phenomenon of tori cross is a signature of the single bond's energy beyond the total vibrational energy. Finally, a method to improve this scarcity is proposed.
Keywords: 33.15.-e      05.45.-a     
Received: 06 January 2012      Published: 31 May 2012
PACS:  33.15.-e (Properties of molecules)  
  05.45.-a (Nonlinear dynamics and chaos)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/6/063301       OR      https://cpl.iphy.ac.cn/Y2012/V29/I6/063301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHAI Liang-Jun
ZHENG Yu-Jun
DING Shi-Liang
[1] Marcus R A 1983 Faraday Discuss. Chem. Soc. 75 103
[2] Sibert III E L, Reinhardt M P and Hynes J T 1982 J. Chem. Phys. 77 3583
[3] Davis M J 1985 J. Chem. Phys. 83 1016
[4] Gerbasi D, Sanz A S, Christopher P S, Shapiro M and Brumer P 2007 J. Chem. Phys. 126 124307
[5] Pa?kauskas R, Chandre C and Uzer T 2008 Phys. Rev. Lett. 100 083001
[6] Jaffé C and Brumer P 1980 J. Chem. Phys. 73 5646
[7] Jung C, Ziemniak E, Carvajal M, Frank A and R Lemus 2001 Chaos 11 464
[8] Efstathiou K and Contopoulos G 2001 Chaos 11 327
[9] Kellman M E and Tyng V 2007 Acc. Chem. Res. 40 243
[10] Yu J and Wu G Z 2001 Chem. Phys. Lett. 343 375
[11] Steven T and Denis U 1994 Phys. Rev. E 50 145
[12] Keshavamurthy S 2007 Int. Rev. Phys. Chem. 26 521
[13] Liu Y, Zheng Y J, Ren W Y and Ding S L 2008 Phys. Rev. A 78 032523
[14] Hou X W, Chen J H and Ma Z Q 2006 Phys. Rev. A 74 062513
[15] Longhi G, Abbate S, Zagano C Botto G and Ricard-Lespade L 1992 Theor. Chim. Acta 82 321
[16] Hutchinson J S, Sibert III E L and Hynes J T 1984 J. Chem. Phys. 81 1314
[17] Halonen L 1998 Adv. Chem. Phys. 104 41
[18] Ma G B and Guo H 1999 J. Chem. Phys. 111 4032
[19] Sako T, Yamanouchi K and Iachello F 2000 J. Chem. Phys. 113 7292
[20] Mauguiere F, Rey M, Tyuterev V, Suarez J and Farantos S C 2010 J. Phys. Chem. A 114 9836
[21] Child M S 1985 Acc. Chem. Res. 18 45
[22] Lu Z M and Kellman M E 1997 J. Chem. Phys. 107 1
[23] Casta?os O and Lemus R 2010 Mol. Phys. 108 597
[24] Wilson E B Jr, Decius J C and Cross P C 1955 Molecular Vibrations: The Theory of Infrared and Raman Vibrational Spectra (New York: Van Nostrand) p 303
Related articles from Frontiers Journals
[1] K. Fakhar, A. H. Kara. The Reduction of Chazy Classes and Other Third-Order Differential Equations Related to Boundary Layer Flow Models[J]. Chin. Phys. Lett., 2012, 29(6): 063301
[2] NIU Yao-Bin, WANG Zhong-Wei, DONG Si-Wei. Modified Homotopy Perturbation Method for Certain Strongly Nonlinear Oscillators[J]. Chin. Phys. Lett., 2012, 29(6): 063301
[3] LIU Yan, LIU Li-Guang, WANG Hang. Study on Congestion and Bursting in Small-World Networks with Time Delay from the Viewpoint of Nonlinear Dynamics[J]. Chin. Phys. Lett., 2012, 29(6): 063301
[4] Paulo C. Rech. Dynamics in the Parameter Space of a Neuron Model[J]. Chin. Phys. Lett., 2012, 29(6): 063301
[5] YAN Yan-Zong, WANG Cang-Long, SHAO Zhi-Gang, YANG Lei. Amplitude Oscillations of the Resonant Phenomena in a Frenkel–Kontorova Model with an Incommensurate Structure[J]. Chin. Phys. Lett., 2012, 29(6): 063301
[6] LI Jian-Ping,YU Lian-Chun,YU Mei-Chen,CHEN Yong**. Zero-Lag Synchronization in Spatiotemporal Chaotic Systems with Long Range Delay Couplings[J]. Chin. Phys. Lett., 2012, 29(5): 063301
[7] JIANG Jun**. An Effective Numerical Procedure to Determine Saddle-Type Unstable Invariant Limit Sets in Nonlinear Systems[J]. Chin. Phys. Lett., 2012, 29(5): 063301
[8] FANG Ci-Jun,LIU Xian-Bin**. Theoretical Analysis on the Vibrational Resonance in Two Coupled Overdamped Anharmonic Oscillators[J]. Chin. Phys. Lett., 2012, 29(5): 063301
[9] WEI Du-Qu, LUO Xiao-Shu, ZHANG Bo. Noise-Induced Voltage Collapse in Power Systems[J]. Chin. Phys. Lett., 2012, 29(3): 063301
[10] SUN Mei, CHEN Ying, CAO Long, WANG Xiao-Fang. Adaptive Third-Order Leader-Following Consensus of Nonlinear Multi-agent Systems with Perturbations[J]. Chin. Phys. Lett., 2012, 29(2): 063301
[11] REN Sheng, ZHANG Jia-Zhong, LI Kai-Lun. Mechanisms for Oscillations in Volume of Single Spherical Bubble Due to Sound Excitation in Water[J]. Chin. Phys. Lett., 2012, 29(2): 063301
[12] WANG Sha, YU Yong-Guang. Generalized Projective Synchronization of Fractional Order Chaotic Systems with Different Dimensions[J]. Chin. Phys. Lett., 2012, 29(2): 063301
[13] HUANG Jia-Min, TAO Wei-Ming**, XU Bo-Hou. Evaluation of an Asymmetric Bistable System for Signal Detection under Lévy Stable Noise[J]. Chin. Phys. Lett., 2012, 29(1): 063301
[14] WANG Can-Jun** . Vibrational Resonance in an Overdamped System with a Sextic Double-Well Potential[J]. Chin. Phys. Lett., 2011, 28(9): 063301
[15] JIA Bing, GU Hua-Guang, **, LI Yu-Ye . Coherence-Resonance-Induced Neuronal Firing near a Saddle-Node and Homoclinic Bifurcation Corresponding to Type-I Excitability[J]. Chin. Phys. Lett., 2011, 28(9): 063301
Viewed
Full text


Abstract