GENERAL |
|
|
|
|
Influence of Passivation Layers for Metal Grating-Based Quantum Well Infrared Photodetectors |
LIU Dong1, FU Yong-Qi1**, YANG Le-Chen1, ZHANG Bao-Shun2, LI Hai-Jun2, FU Kai2, XIONG Min2 |
1School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054
2Suzhou Institute of Nano-technology and Nano-bionics, Chinese Academy of Sciences, Suzhou 215123 |
|
Cite this article: |
LIU Dong, FU Yong-Qi, YANG Le-Chen et al 2012 Chin. Phys. Lett. 29 060701 |
|
|
Abstract To improve absorption of quantum well infrared photodetectors (QWIPs), a coupling layer with metallic grating is designed and fabricated above the quantum well. The metal grating is composed of 100 nm Au film on top, and a 20-nm Ti thin layer between the Au film and the sapphire substrate is coated as an adhesion/buffer layer. To protect the photodetector from oxidation and to decrease leakage, a SiO2 film is deposited by means of plasma-enhanced chemical vapor deposition. A value of about 800 nm is an optimized thickness for the SiO2 applied in the metallic grating?based mid-infrared QWIP. In addition, a QWIP passivation layer is studied experimentally. The results demonstrate that the contribution from the layer is positive for metal grating coupling with the quantum well. The closer the permittivity of the two dielectric layers (SiO2 and the passivation layers), and the closer the two transmission peaks, the greater the QWIP enhancement will be.
|
Keywords:
07.57.Hm
33.55.Ad
42.25.Bs
42.25.Ja
42.55.Px
|
|
Received: 14 February 2012
Published: 31 May 2012
|
|
PACS: |
07.57.Hm
|
(Infrared, submillimeter wave, microwave, and radiowave sources)
|
|
33.55.Ad
|
|
|
42.25.Bs
|
(Wave propagation, transmission and absorption)
|
|
42.25.Ja
|
(Polarization)
|
|
42.55.Px
|
(Semiconductor lasers; laser diodes)
|
|
|
|
|
[1] Chang C C, Sharma Y D, Kim Y S, Jim A B, Rajeev V S, Sanjay K, Huang D H and Lin S Y 2010 Nano Lett. 10 1704[2] Wu W, Alireza B and Hooman M 2010 Appl. Phys. Lett. 96 161107[3] Pan D, Li J M, Zeng Y P and Kong M Y 1996 J. Appl. Phys. 80 7169[4] Yu Z F, Georgios V and Fan S H 2006 Appl. Phys. Lett. 89 151116[5] Anderson J Y and Lundqvist L 1992 J. Appl. Phys. 71 3600[6] Yu L S, Li S S, Wang Y H and Y C Kao 1992 J. Appl. Phys. 72 2105[7] Lundqvist L, Andersson J Y, Paska Z F, Borglind J and Haga D 1993 Appl. Phys. Lett. 63 3361[8] Justin W C, Gautam M, Robert E P and Walter R B 2010 Appl. Opt. 49 3102[9] Hari P P, Khadijeh B, Mahdi F B, Stanley M and David W G 2009 Opt. Express 17 22179[10] Taflove A and Hagness S C 1995 Computational Electrodynamics (Boston: Artech House) p 231[11] Andersson J Y and Landgren G 1988 J. Appl. Phys. 64 4123[12] Raether H 1988 Surface Plasmons on Smooth and Rough Surfaces and on Gratings, Springer Tracts in Modem Physics (Berlin: Springer-Verlag) vol 2 p 109[13] Ghaemi H F, Tineke T, Grupp D E, Ebbesen T W and H J Lezec 1998 Phys. Rev. B 58 6779[14] Krishnan A, Thio T, Kim T J, Lezec H J, Ebbesen T W, Wolff P A, Pendry J, Martin-Moreno L and Garcia-Vidal F J 2001 Opt. Commun. 200 1[15] Hari P P, Mahdi F B and Khadijeh B 2010 J. Opt. Soc. Am. B 27 1693[16] Garcia-Vidal F J, Martin-Moreno L, Ebbesen T W and Kuipers L 2010 Rev. Mod. Phys. 82 729[17] Benabbas A, Halt? V and Bigot J Y 2005 Opt. Express 13 8730[18] Liu Y J, Leong Eunice S P, Wang B and Teng J H 2011 Plasmonics 6 659 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|