Chin. Phys. Lett.  2012, Vol. 29 Issue (6): 060508    DOI: 10.1088/0256-307X/29/6/060508
GENERAL |
New Wronskian Form of the N-Soliton Solution to a (2+1)-Dimensional Breaking Soliton Equation
CUI Kai*
School of Economics and Management, North China University of Water Conservancy and Electric Power, Zhengzhou 450046
Cite this article:   
CUI Kai 2012 Chin. Phys. Lett. 29 060508
Download: PDF(384KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Soliton phenomena exist in nonlinear science and the financial field. By using the Wronskian technique, a new Wronskian condition is proposed for a (2+1)-dimensional breaking soliton equation. Moreover, with the help of the bilinear transformation, a new Wronskian form of the N-soliton solution is obtained for the (2+1)-dimensional breaking soliton equation.
Received: 20 February 2012      Published: 31 May 2012
PACS:  05.45.Yv (Solitons)  
  02.30.Jr (Partial differential equations)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/6/060508       OR      https://cpl.iphy.ac.cn/Y2012/V29/I6/060508
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
CUI Kai
[1] Jalali B et al 2010 Eur. Phys. J. Spec. Top. 185 145
[2] Calogero F and Degasperis A 1976 Nuovo Cimento B 32 201
[3] Calogero F and Degasperis A 1977 Nuovo Cimento B 39 1
[4] Yong X L, Zhang Z Y and Chen Y F 2008 Phys. Lett. A 372 6273
[5] Hirota R 2004 The Direct Methods in Soliton Theory (Cambridge: Cambridge University)
[6] Ma W X 2004 Chaos Solitons Fractals 19 163
[7] Ma W X 2005 Trans. Am. Math. Soc. 357 1753
[8] Bogoyavlenskii O I 1990 Math. USSR. Izv. 34 245
[9] Li Y S and Zhang Y J 1993 J. Phys. A 26 7487
[10] Lou S Y 1993 J. Phys. A 26 L789
[11] Geng X G and Cao C W 2004 Chaos Solitons Fractals 22 683
[12] Cao X X, Fang J P, Ma S H and Ren Q B 2012 Acta Phys. Sin. (in press) (in Chinese)
[13] Ma W X 2011 Phys. Lett. A 375 3931
[14] Ma W X, Abdeljabbar A and Asaad M G 2011 Appl. Math. Comput. 217 10016
[15] Wu J P 2011 Chin. Phys. Lett. 28 050501
[16] Su T, Geng X G and Ma Y L 2007 Chin. Phys. Lett. 24 305
[17] Xu X G, Meng X H and Gao Y T 2008 Chin. Phys. Lett. 25 3890
Related articles from Frontiers Journals
[1] S. Y. Lou, Man Jia, and Xia-Zhi Hao. Higher Dimensional Camassa–Holm Equations[J]. Chin. Phys. Lett., 2023, 40(2): 060508
[2] Shubin Wang, Guoli Ma, Xin Zhang, and Daiyin Zhu. Dynamic Behavior of Optical Soliton Interactions in Optical Communication Systems[J]. Chin. Phys. Lett., 2022, 39(11): 060508
[3] Wen-Xiu Ma. Matrix Integrable Fourth-Order Nonlinear Schr?dinger Equations and Their Exact Soliton Solutions[J]. Chin. Phys. Lett., 2022, 39(10): 060508
[4] Chong Liu, Shao-Chun Chen, Xiankun Yao, and Nail Akhmediev. Modulation Instability and Non-Degenerate Akhmediev Breathers of Manakov Equations[J]. Chin. Phys. Lett., 2022, 39(9): 060508
[5] Qin Zhou, Yu Zhong, Houria Triki, Yunzhou Sun, Siliu Xu, Wenjun Liu, and Anjan Biswas. Chirped Bright and Kink Solitons in Nonlinear Optical Fibers with Weak Nonlocality and Cubic-Quantic-Septic Nonlinearity[J]. Chin. Phys. Lett., 2022, 39(4): 060508
[6] Yuan Zhao, Yun-Bin Lei, Yu-Xi Xu, Si-Liu Xu, Houria Triki, Anjan Biswas, and Qin Zhou. Vector Spatiotemporal Solitons and Their Memory Features in Cold Rydberg Gases[J]. Chin. Phys. Lett., 2022, 39(3): 060508
[7] Yiling Zhang, Chunyu Jia, and Zhaoxin Liang. Dynamics of Two Dark Solitons in a Polariton Condensate[J]. Chin. Phys. Lett., 2022, 39(2): 060508
[8] Qin Zhou. Influence of Parameters of Optical Fibers on Optical Soliton Interactions[J]. Chin. Phys. Lett., 2022, 39(1): 060508
[9] Xiao-Man Zhang, Yan-Hong Qin, Li-Ming Ling, and Li-Chen Zhao. Inelastic Interaction of Double-Valley Dark Solitons for the Hirota Equation[J]. Chin. Phys. Lett., 2021, 38(9): 060508
[10] Qi-Hao Cao  and Chao-Qing Dai. Symmetric and Anti-Symmetric Solitons of the Fractional Second- and Third-Order Nonlinear Schr?dinger Equation[J]. Chin. Phys. Lett., 2021, 38(9): 060508
[11] Yuan-Yuan Yan  and Wen-Jun Liu. Soliton Rectangular Pulses and Bound States in a Dissipative System Modeled by the Variable-Coefficients Complex Cubic-Quintic Ginzburg–Landau Equation[J]. Chin. Phys. Lett., 2021, 38(9): 060508
[12] Kai-Hua Yin, Xue-Ping Cheng, and Ji Lin. Soliton Molecule and Breather-Soliton Molecule Structures for a General Sixth-Order Nonlinear Equation[J]. Chin. Phys. Lett., 2021, 38(8): 060508
[13] Zequn Qi , Zhao Zhang , and Biao Li. Space-Curved Resonant Line Solitons in a Generalized $(2+1)$-Dimensional Fifth-Order KdV System[J]. Chin. Phys. Lett., 2021, 38(6): 060508
[14] Wei Wang, Ruoxia Yao, and Senyue Lou. Abundant Traveling Wave Structures of (1+1)-Dimensional Sawada–Kotera Equation: Few Cycle Solitons and Soliton Molecules[J]. Chin. Phys. Lett., 2020, 37(10): 060508
[15] Li-Chen Zhao, Yan-Hong Qin, Wen-Long Wang, Zhan-Ying Yang. A Direct Derivation of the Dark Soliton Excitation Energy[J]. Chin. Phys. Lett., 2020, 37(5): 060508
Viewed
Full text


Abstract