Chin. Phys. Lett.  2012, Vol. 29 Issue (6): 060507    DOI: 10.1088/0256-307X/29/6/060507
GENERAL |
Amplitude Oscillations of the Resonant Phenomena in a Frenkel–Kontorova Model with an Incommensurate Structure
YAN Yan-Zong1**, WANG Cang-Long2,3, SHAO Zhi-Gang4, YANG Lei2,3,5
1College of Mathematics and Statistics, Longdong University, Qingyang 745000
2Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000
3College of Physics and Electronic Engineering and Joint Laboratory of Atomic and Molecular Physics of NWNU & IMP CAS, Northwest Normal University, Lanzhou 730070
4Laboratary of Quantum Information Technology, Institute of Condensed Matter Physics, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006
5Department of Physics, Lanzhou University, Lanzhou 730000
Cite this article:   
YAN Yan-Zong, WANG Cang-Long, SHAO Zhi-Gang et al  2012 Chin. Phys. Lett. 29 060507
Download: PDF(531KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Dynamical mode locking phenomena in incommensurate structures of the dc- and ac-driven overdamped Frenkel–Kontorova model are studied by molecular-dynamics simulations. It is found that the Shapiro steps exhibit significantly different amplitude and frequency dependences from the ones observed in the commensurate structures. The step widths still oscillate with the amplitude, but the form is no longer Bessel-like, i.e., the anomaly appears in our simulations. The same type of anomalies is also exhibited by the critical depinning force. The oscillatory behavior and the anomalies are also revealed in the (F,Fac) phase diagram where three phases are observed. These oscillations are directly correlated with the existence and the stability of interference phenomena in real systems.
Received: 08 October 2011      Published: 31 May 2012
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
  45.05.+x (General theory of classical mechanics of discrete systems)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/6/060507       OR      https://cpl.iphy.ac.cn/Y2012/V29/I6/060507
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
YAN Yan-Zong
WANG Cang-Long
SHAO Zhi-Gang
YANG Lei
[1] Grüner G 1988 Rev. Mod. Phys. 60 1129
[2] Thorne R E, Hubacek J S, Lyons W G, Lyding J W and J R Tucker 1988 Phys. Rev. B 37 10055
[3] Kriza G, Quirion G, Traetteberg O, Kang W and Jérome D 1991 Phys. Rev. Lett. 66 1922
[4] Kolton A B, Dominguez D and Gr?nbech-Jensen N 2001 Phys. Rev. Lett. 86 4112
[5] Josephson D 1964 Rev. Mod. Phys. 36 216
[6] Wang H B, Kim S M, Urayama S, Nagao M, Hatano T, Arisawa S, Yamashita T and Wu P H 2006 Appl. Phys. Lett. 88 063503
[7] Komissinskiy P, Ovsyannikov G A, Constantinian K Y, Kislinski Y V, Borisenko I V, Soloviev I I, Kornev V K, Goldobin E and Winkler D 2008 Phys. Rev. B 78 024501
[8] Yang Y, Wang C L, Duan W S and Chen J M 2011 Chin. Phys. Lett. 28 030503
[9] Braun O and Kivshar Y S 1990 Phys. Rev. B 41 7118
[10] Floría L M and Falo F 1992 Phys. Rev. Lett. 68 2713
[11] Falo F, Floria L M, Martinez P J and Mazo J J 1993 Phys. Rev. B 48 7434
[12] Mazo J J, Falo F and Floria L M 1995 Phys. Rev. B 52 6451
[13] Floria L M and Mazo J J 1996 Adv. Phys. 45 505
[14] Shapiro S, Janus A R and Holly S 1963 Phys. Rev. Lett. 11 80
[15] Burkov S E 1991 Phys. Rev. B 44 2850
[16] Hu B and Tekic J 2005 Phys. Rev. E 72 056602
[17] Hu B and Tekic J 2007 Appl. Phys. Lett. 90 102119
[18] Hu B and Tekic J 2887 Phys. Rev. E 75 056608
[19] Teki? J and Hu B 2008 Phys. Rev. B 78 104305
[20] Teki? J, He D and Hu B 2009 Phys. Rev. E 79 036604
[21] Teki? J and Hu B 2010 Phys. Rev. E 81 036604
[22] Teki? J and Zoran I 2011 Phys. Rev. E 83 056604
Related articles from Frontiers Journals
[1] Rui Zhang, Fan Ding, Xujin Yuan, and Mingji Chen. Influence of Spatial Correlation Function on Characteristics of Wideband Electromagnetic Wave Absorbers with Chaotic Surface[J]. Chin. Phys. Lett., 2022, 39(9): 060507
[2] Peng Gao, Zeyu Wu, Zhan-Ying Yang, and Wen-Li Yang. Reverse Rotation of Ring-Shaped Perturbation on Homogeneous Bose–Einstein Condensates[J]. Chin. Phys. Lett., 2021, 38(9): 060507
[3] Jia-Chen Zhang , Wei-Kai Ren , and Ning-De Jin. Rescaled Range Permutation Entropy: A Method for Quantifying the Dynamical Complexity of Extreme Volatility in Chaotic Time Series[J]. Chin. Phys. Lett., 2020, 37(9): 060507
[4] Qianqian Wu, Xingyi Liu, Tengfei Jiao, Surajit Sen, and Decai Huang. Head-on Collision of Solitary Waves Described by the Toda Lattice Model in Granular Chain[J]. Chin. Phys. Lett., 2020, 37(7): 060507
[5] Yun-Cheng Liao, Bin Liu, Juan Liu, Jia Chen. Asymmetric and Single-Side Splitting of Dissipative Solitons in Complex Ginzburg–Landau Equations with an Asymmetric Wedge-Shaped Potential[J]. Chin. Phys. Lett., 2019, 36(1): 060507
[6] Ying Du, Jiaqi Liu, Shihui Fu. Information Transmitting and Cognition with a Spiking Neural Network Model[J]. Chin. Phys. Lett., 2018, 35(9): 060507
[7] Quan-Bao Ji, Zhuo-Qin Yang, Fang Han. Bifurcation Analysis and Transition Mechanism in a Modified Model of Ca$^{2+}$ Oscillations[J]. Chin. Phys. Lett., 2017, 34(8): 060507
[8] Ya-Tong Zhou, Yu Fan, Zi-Yi Chen, Jian-Cheng Sun. Multimodality Prediction of Chaotic Time Series with Sparse Hard-Cut EM Learning of the Gaussian Process Mixture Model[J]. Chin. Phys. Lett., 2017, 34(5): 060507
[9] Jing-Hui Li. Effect of Network Size on Collective Motion of Mean Field for a Globally Coupled Map with Disorder[J]. Chin. Phys. Lett., 2016, 33(12): 060507
[10] Jian-Cheng Sun. Complex Networks from Chaotic Time Series on Riemannian Manifold[J]. Chin. Phys. Lett., 2016, 33(10): 060507
[11] HUANG Feng, CHEN Han-Shuang, SHEN Chuan-Sheng. Phase Transitions of Majority-Vote Model on Modular Networks[J]. Chin. Phys. Lett., 2015, 32(11): 060507
[12] WANG Yu-Xin, ZHAI Ji-Quan, XU Wei-Wei, SUN Guo-Zhu, WU Pei-Heng. A New Quantity to Characterize Stochastic Resonance[J]. Chin. Phys. Lett., 2015, 32(09): 060507
[13] JI Quan-Bao, ZHOU Yi, YANG Zhuo-Qin, MENG Xiang-Ying. Bifurcation Scenarios of a Modified Mathematical Model for Intracellular Ca2+ Oscillations[J]. Chin. Phys. Lett., 2015, 32(5): 060507
[14] HAN Fang, WANG Zhi-Jie, FAN Hong, GONG Tao. Robust Synchronization in an E/I Network with Medium Synaptic Delay and High Level of Heterogeneity[J]. Chin. Phys. Lett., 2015, 32(4): 060507
[15] ZHAI Ji-Quan, LI Yong-Chao, SHI Jian-Xin, ZHOU Yu, LI Xiao-Hu, XU Wei-Wei, SUN Guo-Zhu, WU Pei-Heng. Dependence of Switching Current Distribution of a Current-Biased Josephson Junction on Microwave Frequency[J]. Chin. Phys. Lett., 2015, 32(4): 060507
Viewed
Full text


Abstract