GENERAL |
|
|
|
|
Amplitude Oscillations of the Resonant Phenomena in a Frenkel–Kontorova Model with an Incommensurate Structure |
YAN Yan-Zong1**, WANG Cang-Long2,3, SHAO Zhi-Gang4, YANG Lei2,3,5 |
1College of Mathematics and Statistics, Longdong University, Qingyang 745000 2Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 3College of Physics and Electronic Engineering and Joint Laboratory of Atomic and Molecular Physics of NWNU & IMP CAS, Northwest Normal University, Lanzhou 730070 4Laboratary of Quantum Information Technology, Institute of Condensed Matter Physics, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006 5Department of Physics, Lanzhou University, Lanzhou 730000 |
|
Cite this article: |
YAN Yan-Zong, WANG Cang-Long, SHAO Zhi-Gang et al 2012 Chin. Phys. Lett. 29 060507 |
|
|
Abstract Dynamical mode locking phenomena in incommensurate structures of the dc- and ac-driven overdamped Frenkel–Kontorova model are studied by molecular-dynamics simulations. It is found that the Shapiro steps exhibit significantly different amplitude and frequency dependences from the ones observed in the commensurate structures. The step widths still oscillate with the amplitude, but the form is no longer Bessel-like, i.e., the anomaly appears in our simulations. The same type of anomalies is also exhibited by the critical depinning force. The oscillatory behavior and the anomalies are also revealed in the (F,Fac) phase diagram where three phases are observed. These oscillations are directly correlated with the existence and the stability of interference phenomena in real systems.
|
|
Received: 08 October 2011
Published: 31 May 2012
|
|
PACS: |
05.45.-a
|
(Nonlinear dynamics and chaos)
|
|
45.05.+x
|
(General theory of classical mechanics of discrete systems)
|
|
|
|
|
[1] Grüner G 1988 Rev. Mod. Phys. 60 1129 [2] Thorne R E, Hubacek J S, Lyons W G, Lyding J W and J R Tucker 1988 Phys. Rev. B 37 10055 [3] Kriza G, Quirion G, Traetteberg O, Kang W and Jérome D 1991 Phys. Rev. Lett. 66 1922 [4] Kolton A B, Dominguez D and Gr?nbech-Jensen N 2001 Phys. Rev. Lett. 86 4112 [5] Josephson D 1964 Rev. Mod. Phys. 36 216 [6] Wang H B, Kim S M, Urayama S, Nagao M, Hatano T, Arisawa S, Yamashita T and Wu P H 2006 Appl. Phys. Lett. 88 063503 [7] Komissinskiy P, Ovsyannikov G A, Constantinian K Y, Kislinski Y V, Borisenko I V, Soloviev I I, Kornev V K, Goldobin E and Winkler D 2008 Phys. Rev. B 78 024501 [8] Yang Y, Wang C L, Duan W S and Chen J M 2011 Chin. Phys. Lett. 28 030503 [9] Braun O and Kivshar Y S 1990 Phys. Rev. B 41 7118 [10] Floría L M and Falo F 1992 Phys. Rev. Lett. 68 2713 [11] Falo F, Floria L M, Martinez P J and Mazo J J 1993 Phys. Rev. B 48 7434 [12] Mazo J J, Falo F and Floria L M 1995 Phys. Rev. B 52 6451 [13] Floria L M and Mazo J J 1996 Adv. Phys. 45 505 [14] Shapiro S, Janus A R and Holly S 1963 Phys. Rev. Lett. 11 80 [15] Burkov S E 1991 Phys. Rev. B 44 2850 [16] Hu B and Tekic J 2005 Phys. Rev. E 72 056602 [17] Hu B and Tekic J 2007 Appl. Phys. Lett. 90 102119 [18] Hu B and Tekic J 2887 Phys. Rev. E 75 056608 [19] Teki? J and Hu B 2008 Phys. Rev. B 78 104305 [20] Teki? J, He D and Hu B 2009 Phys. Rev. E 79 036604 [21] Teki? J and Hu B 2010 Phys. Rev. E 81 036604 [22] Teki? J and Zoran I 2011 Phys. Rev. E 83 056604 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|