Chin. Phys. Lett.  2012, Vol. 29 Issue (6): 060506    DOI: 10.1088/0256-307X/29/6/060506
GENERAL |
Dynamics in the Parameter Space of a Neuron Model
Paulo C. Rech**
Departamento de Física, Universidade do Estado de Santa Catarina, 89219-710 Joinville, Brazil
Cite this article:   
Paulo C. Rech 2012 Chin. Phys. Lett. 29 060506
Download: PDF(4580KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Some two-dimensional parameter-space diagrams are numerically obtained by considering the largest Lyapunov exponent for a four-dimensional thirteen-parameter Hindmarsh–Rose neuron model. Several different parameter planes are considered, and it is shown that depending on the combination of parameters, a typical scenario can be preserved: for some choice of two parameters, the parameter plane presents a comb-shaped chaotic region embedded in a large periodic region. It is also shown that there exist regions close to these comb-shaped chaotic regions, separated by the comb teeth, organizing themselves in period-adding bifurcation cascades.
Keywords: 05.45.-a      05.45.Pq      05.45.Ac     
Received: 03 February 2012      Published: 31 May 2012
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
  05.45.Pq (Numerical simulations of chaotic systems)  
  05.45.Ac (Low-dimensional chaos)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/6/060506       OR      https://cpl.iphy.ac.cn/Y2012/V29/I6/060506
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Paulo C. Rech
[1] Hindmarsh J and Rose R 1984 Proc. R. Soc. London B 221 87
[2] Hodgkin A L and Huxley A F 1952 J. Physiol. Lond. 117 500
[3] Herz A V M, Gollisch T, Machens C K and Jaeger D 2006 Science 314 80
[4] Pinto R D, Varona P, Volkovskii A R, Szücs A, Abarbanel H D I and Rabinovich M I 2000 Phys. Rev. E 62 2644
[5] Yu H and Peng J 2006 Chaos Solitons Fractals 29 342
[6] González-Miranda J M 2007 Int. J. Bifur. Chaos 17 3071
[7] Storace M, Linaro D and de Lange E 2008 Chaos 18 033128
[8] Innocenti G and Genesio R 2009 Chaos 19 023124
[9] Moujahid A, d'Anjou A, Torrealdea F J and Torrealdea F 2011 Chaos Solitons Fractals 44 929
[10] Barrio R and Shilnikov A 2011 J. Math. Neurosci. 1 6
[11] Linaro D, Poggi T and Storace M 2010 Phys. Lett. A 374 4589
[12] Rech P C 2011 Phys. Lett. A 375 1461
[13] Wolf A, Swift J B, Swinney H L and Vastano J A 1985 Physica D 16 285
Related articles from Frontiers Journals
[1] K. Fakhar, A. H. Kara. The Reduction of Chazy Classes and Other Third-Order Differential Equations Related to Boundary Layer Flow Models[J]. Chin. Phys. Lett., 2012, 29(6): 060506
[2] ZHAI Liang-Jun, ZHENG Yu-Jun, DING Shi-Liang. Chaotic Dynamics of Triatomic Normal Mode Molecules[J]. Chin. Phys. Lett., 2012, 29(6): 060506
[3] NIU Yao-Bin, WANG Zhong-Wei, DONG Si-Wei. Modified Homotopy Perturbation Method for Certain Strongly Nonlinear Oscillators[J]. Chin. Phys. Lett., 2012, 29(6): 060506
[4] LIU Yan, LIU Li-Guang, WANG Hang. Study on Congestion and Bursting in Small-World Networks with Time Delay from the Viewpoint of Nonlinear Dynamics[J]. Chin. Phys. Lett., 2012, 29(6): 060506
[5] YAN Yan-Zong, WANG Cang-Long, SHAO Zhi-Gang, YANG Lei. Amplitude Oscillations of the Resonant Phenomena in a Frenkel–Kontorova Model with an Incommensurate Structure[J]. Chin. Phys. Lett., 2012, 29(6): 060506
[6] LI Jian-Ping,YU Lian-Chun,YU Mei-Chen,CHEN Yong**. Zero-Lag Synchronization in Spatiotemporal Chaotic Systems with Long Range Delay Couplings[J]. Chin. Phys. Lett., 2012, 29(5): 060506
[7] JIANG Jun**. An Effective Numerical Procedure to Determine Saddle-Type Unstable Invariant Limit Sets in Nonlinear Systems[J]. Chin. Phys. Lett., 2012, 29(5): 060506
[8] FANG Ci-Jun,LIU Xian-Bin**. Theoretical Analysis on the Vibrational Resonance in Two Coupled Overdamped Anharmonic Oscillators[J]. Chin. Phys. Lett., 2012, 29(5): 060506
[9] WEI Du-Qu, LUO Xiao-Shu, ZHANG Bo. Noise-Induced Voltage Collapse in Power Systems[J]. Chin. Phys. Lett., 2012, 29(3): 060506
[10] ZHENG Yong-Ai. Adaptive Generalized Projective Synchronization of Takagi-Sugeno Fuzzy Drive-response Dynamical Networks with Time Delay[J]. Chin. Phys. Lett., 2012, 29(2): 060506
[11] SUN Mei, CHEN Ying, CAO Long, WANG Xiao-Fang. Adaptive Third-Order Leader-Following Consensus of Nonlinear Multi-agent Systems with Perturbations[J]. Chin. Phys. Lett., 2012, 29(2): 060506
[12] REN Sheng, ZHANG Jia-Zhong, LI Kai-Lun. Mechanisms for Oscillations in Volume of Single Spherical Bubble Due to Sound Excitation in Water[J]. Chin. Phys. Lett., 2012, 29(2): 060506
[13] WANG Sha, YU Yong-Guang. Generalized Projective Synchronization of Fractional Order Chaotic Systems with Different Dimensions[J]. Chin. Phys. Lett., 2012, 29(2): 060506
[14] LI Xian-Feng**, Andrew Y. -T. Leung, CHU Yan-Dong. Symmetry and Period-Adding Windows in a Modified Optical Injection Semiconductor Laser Model[J]. Chin. Phys. Lett., 2012, 29(1): 060506
[15] HUANG Jia-Min, TAO Wei-Ming**, XU Bo-Hou. Evaluation of an Asymmetric Bistable System for Signal Detection under Lévy Stable Noise[J]. Chin. Phys. Lett., 2012, 29(1): 060506
Viewed
Full text


Abstract