Chin. Phys. Lett.  2012, Vol. 29 Issue (6): 060505    DOI: 10.1088/0256-307X/29/6/060505
GENERAL |
Variational Approach for Fractional Diffusion-Wave Equations on Cantor Sets
WU Guo-Cheng1, WU Kai-Teng2**
1College of Water Resources and Hydropower, Sichuan University, Chengdu 610065
2Key Laboratory of Numerical Simulation of Sichuan Province, Neijiang Normal University, Neijiang 641112
Cite this article:   
WU Guo-Cheng, WU Kai-Teng 2012 Chin. Phys. Lett. 29 060505
Download: PDF(406KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The fractional variational iteration method is used to investigate the diffusion-wave problem on Cantor sets. The approximate solution is obtained in forms of fractional differentiable functions.

Keywords: 05.45.Df      05.30.Pr     
Received: 30 November 2011      Published: 31 May 2012
PACS:  05.45.Df (Fractals)  
  05.30.Pr (Fractional statistics systems)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/6/060505       OR      https://cpl.iphy.ac.cn/Y2012/V29/I6/060505
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WU Guo-Cheng
WU Kai-Teng

[1] He J H 1998 Comput. Method. Appl. Mech. Engin. 167 57

[2] He J H 1999 Int. J. Non-Linear Mech. 34 699

[3] Mainardi F 1996 Appl. Math. Lett. 9 23

[4] Kolwankar K M and Gangal A D 1998 Phys. Rev. Lett. 80 214

[5] Kolwankar K M and Gangal A D 1996 Chaos 6 505

[6] Carpinteri A, Cornetti P and Kolwankar K M 2004 Chaos Solitons Fractals 21 623

[7] Chen Y, Yan Y and Zhang K 2010 J. Math. Anal. Appl. 362 17

[8] Wu G C 2011 Commun. Frac. Calc. 2 27

[9] Jumarie G 2007 Chaos Solitons Fractals 32 969

[10] Almeida R, Malinowska A B and Torres D F M 2010 J. Math. Phys. 51 052105

[11] Yang X J 2009 MS Dissertation (Xuzhou: China University of Mining and Technology) (in Chinese)

[12] Wu G C 2011 Comput. Math. Appl. 61 2186

[13] Wu G C and Lee E W M 2010 Phys. Lett. A 374 2506

[14] Jumarie G 2009 Appl. Math. Lett. 22 378

[15] Jumarie G 2010 Nonlinear Anal. Real World Appl. 11 535

[16] Jumarie G 2010 Appl. Math. Lett. 23 1444

[17] Carpinteri A, Cornetti P, Sapora A, Di Paola M and Zingales M 2009 Phys. Scripta T136 014003

[18] Carpinteri A and Pugno N 2002 Int. J. Numer. Anal. Methods Geomech. 26 499

[19] Carpinteri A and Cornetti P 2002 Chaos Solitons Fractals 13 85

[20] Ben Adda F and Cresson J 2001 J. Math. Anal. Appl. 263 721

[21] Wu G C and Zhang S 2011 Phys. Lett. A 375 5

[22] Wu G C 2011 Math. Comput. Model. 54 2104

[23] Jumarie G 2009 Chaos Solitons Fractals 41 1590

[24] Malinowska A B, Ammi M R S and Torres D F M 2010 Commun. Fract. Calc. 1 32

[25] West B J, Bologna M and Grigolini P 2003 Physics of Fractal Operators (New York: Springer)

[26] Nottale L 1993 Fractal Spacetime and Microphysics (Singapore: World Scientific)

[27] Liao T H and Gao Q 2005 Chin. Phys. Lett. 22 2316

[28] Jafari H, Yousefi S A, Firoozjaee M A, Momani S and Khalique C M 2011 Comput. Math. Appl. 62 1038

[29] Hristov J 2010 Thermal Sci. 14 291

[30] Hristov J 2011 Eur. Phys. J. Special Topics 193 229

[31] Meilanov R, Shabanova M and Akhmedov E 2011 Int. Rev. Chem. Eng. 3 810

[32] Santos M C, Lenzi E, Gomes E M, Lenzi M K and Lenzi E K 2011 Int. Rev. Chem. Eng. 3 814

[33] Kadem A and Baleanu D 2011 Rom. J. Phys. 56 332

[34] Kadem A and Baleanu D 2010 Comput. Math. Appl. 59 1865

[35] Li C P and Wang Y H 2009 Comput. Math. Appl. 57 1672

[36] Wang J W and Chen A M 2010 Chin. Phys. Lett. 27 110501

Related articles from Frontiers Journals
[1] YUN Mei-Juan, ZHENG Wei. Fractal Analysis of Robertson-Stiff Fluid Flow in Porous Media[J]. Chin. Phys. Lett., 2012, 29(6): 060505
[2] JIANG Guo-Hui, ZHANG Yan-Hui**, BIAN Hong-Tao, XU Xue-You . Fractal Analysis of Transport Properties in a Sinai Billiard[J]. Chin. Phys. Lett., 2011, 28(12): 060505
[3] ZHOU Yong-Zhi, LI Mei, GENG Hao-Ran**, YANG Zhong-Xi, SUN Chun-Jing . Hurst's Exponent Determination for Radial Distribution Functions of In, Sn and In-40 wt%Sn Melt[J]. Chin. Phys. Lett., 2011, 28(12): 060505
[4] SHANG Hui-Lin**, WEN Yong-Peng . Fractal Erosion of the Safe Basin in a Helmholtz Oscillator and Its Control by Linear Delayed Velocity Feedback[J]. Chin. Phys. Lett., 2011, 28(11): 060505
[5] SHANG Hui-Lin. Control of Fractal Erosion of Safe Basins in a Holmes–Duffing System via Delayed Position Feedback[J]. Chin. Phys. Lett., 2011, 28(1): 060505
[6] CAI Jian-Chao, YU Bo-Ming, MEI Mao-Fei, LUO Liang. Capillary Rise in a Single Tortuous Capillary[J]. Chin. Phys. Lett., 2010, 27(5): 060505
[7] ZHU Ren-Gui, WANG An-Min. Statistical Interaction Term of One-Dimensional Anyon Models[J]. Chin. Phys. Lett., 2010, 27(4): 060505
[8] DONG Xi-Jie, HU Yi-Fan, WU Yu-Ying, ZHAO Jun, WAN Zhen-Zhu. A Fractal Model for Effective Thermal Conductivity of Isotropic Porous Silica Low-k Materials[J]. Chin. Phys. Lett., 2010, 27(4): 060505
[9] CAI Jian-Chao, YU Bo-Ming, ZOU Ming-Qing, MEI Mao-Fei. Fractal Analysis of Surface Roughness of Particles in Porous Media[J]. Chin. Phys. Lett., 2010, 27(2): 060505
[10] YUN Mei-Juan, YUE Yin, YU Bo-Ming, LU Jian-Duo, ZHENG Wei . A Geometrical Model for Tortuosity of Tortuous Streamlines in Porous Media with Cylindrical Particles[J]. Chin. Phys. Lett., 2010, 27(10): 060505
[11] GUO Long, CAI Xu. The Fractal Dimensions of Complex Networks[J]. Chin. Phys. Lett., 2009, 26(8): 060505
[12] WU Jin-Sui, YIN Shang-Xian, ZHAO Dong-Yu. A Particle Resistance Model for Flow through Porous Media[J]. Chin. Phys. Lett., 2009, 26(6): 060505
[13] HUANG Shou-Fang, ZHANG Ji-Qian, DING Shi-Jiang. State-to-State Transitions in a Hindmarsh-Rose Neuron System[J]. Chin. Phys. Lett., 2009, 26(5): 060505
[14] JIANG Zhi-Qiang, , ZHOU Wei-Xing, ,. Direct Evidence for Inversion Formula in Multifractal Financial Volatility Measure[J]. Chin. Phys. Lett., 2009, 26(2): 060505
[15] ZHU Jian-Zhou. Intermittency Growth in Fluid Turbulence[J]. Chin. Phys. Lett., 2006, 23(8): 060505
Viewed
Full text


Abstract